Informação da revista
Vol. 89. Núm. 3.
Páginas 226-242 (Maio - Junho 2013)
Baixar PDF
Mais opções do artigo
Vol. 89. Núm. 3.
Páginas 226-242 (Maio - Junho 2013)
DOI: 10.1016/j.jpedp.2012.11.002
Open Access
Persistent pulmonary hypertension of the newborn: Recent advances in pathophysiology and treatment
Hipertensão pulmonar persistente neonatal: recentes avanços na fisiopatologia e tratamento
Joaquim E.B. Cabrala,
Autor para correspondência

Corresponding author.
, Jaques Belikb
a Neonatologista. Hospital São Luiz, São Paulo, SP, Brasil
b Neonatologista. Professor of Pediatrics and Physiology, University of Toronto, The Hospital for Sick Children, Toronto, Canadá
Informação do artigo

Although recognized for decades, little is known about the etiology, physiopathology, and prevention of persistent pulmonary hypertension of the newborn (PPHN). and its treatment remains a major challenge for neonatologists. In this review, the clinical features and physiopathology of the syndrome will be addressed, as well as its general and specific treatments.

Data source

A review was carried out in PubMed, Cochrane Library, and MRei consult databases, searching for articles related to the syndrome and published between 1995 and 2011.

Data synthesis

Risk factors and the physiopathological mechanisms of the syndrome are discussed. The clinical picture depends on the different factors involved, which are probably related to the etiology and physiopathological mechanisms. In addition to the measures used to allow the decrease in pulmonary vascular resistance after birth, some cases will require pulmonary vasodilators. Although nitric oxide has proved effective, other vasodilators have been recently used, but clinical evidence is still lacking to demonstrate their benefits in the treatment of PPHN.


Despite recent technological advances and new physiopathological knowledge, mortality associated with PPHN remains at 10%. More clinical research and evidence-based experimental results are needed to prevent, treat, and reduce the morbidity/mortality associated with this neonatal syndrome.

Pulmonary hypertension
Pulmonary vasodilators
Nitric oxide

: Embora reconhecida há décadas, ainda pouco se sabe a respeito da etiologia, fisiopatologia e prevenção da hipertensão pulmonar persistente neonatal (HPPN), e seu tratamento continua a ser um grande desafio para os neonatologistas. Nesta revisão, vamos abordar as características clínicas e os mecanismos fisiopatológicos da síndrome, assim como seu tratamento geral e específico.

Fontes de dados

Fizemos uma revisão nas bases de dados PubMed, Cochrane Library e MRei Consult, procurando por artigos relacionados à síndrome e publicados entre 1995 e 2011.

Síntese de dados

São discutidos os fatores de risco e os mecanismos fisiopatológicos da síndrome. O quadro clínico depende dos diferentes fatores envolvidos, que provavelmen- te estão relacionados com a etiologia e o mecanismo fisiopatológico. Além das medidas utilizadas para permitir a queda da resistência vascular pulmonar após o nascimento, alguns casos necessitam de vasodilatadores pulmonares. Embora o óxido nítrico tenha se provado efetivo, recentemente, outros vasodilatadores têm sido usados, mas ainda faltam evidências clínicas para comprovar seus benefícios no tratamento da HPPN.


Apesar dos recentes avanços tecnológicos e dos novos conhecimentos fisio- patológicos, a mortalidade associada à HPPN ainda é de 10%. São necessárias mais pes- quisas clínicas e resultados experimentais baseados em evidências para prevenir, tratar e reduzir a morbimortalidade associada a esta síndrome neonatal.

Palavras chave:
Hipertensão pulmonar
Vasodilatadores pulmonares
Óxido nítrico
O texto completo está disponível em PDF
J.R. Klinger.
The nitric oxide/cGMP signaling pathway in pulmonary hypertension.
Clin Chest Med., 28 (2007), pp. 143-167
M.J. Nowicki, D. Shi, Z. Cai, P.R. Bishop, W.L. May.
Developmental expression of endothelial nitric oxide synthase (eNOS) in the rat liver.
Pediatr Res., 54 (2003), pp. 732-738
T.A. Parker, T.D. le Cras, J.P. Kinsella, S.H. Abman.
Developmental changes in endothelial nitric oxide synthase expression and activity in ovine fetal lung.
Am J Physiol Lung Cell Mol Physiol., 278 (2000), pp. L202-L208
T. Lucke, N. Kanzelmeyer, M.J. Kemper, D. Tsikas, A.M. Das.
Developmental changes in the L-arginine/nitric oxide pathway frominfancytoadulthood:plasmaasymmetricdimethylarginine levels decrease with age.
Clin Chem Lab Med., 45 (2007), pp. 1525-1530
J. Belik, D. Shehnaz, J. Pan, H. Grasemann.
Developmental changes in arginase expression and activity in the lung.
Am J Physiol Lung Cell Mol Physiol., 294 (2008), pp. L498-L504
H.H. Schmidt, P.M. Schmidt, J.P. Stasch.
NO- and haem-independent soluble guanylate cyclase activators.
Handb Exp Pharmacol., (2009), pp. 309-339
J.P. Stasch, A.J. Hobbs, NO-independent.
haem-dependent soluble guanylate cyclase stimulators.
Handb Exp Pharmacol., (2009), pp. 277-308
S. Behrends, J. Kempfert, A. Mietens, M. Koglin, H. Scholz, R. Middendorff.
Developmental changes of nitric oxide- sensitive guanylyl cyclase expression in pulmonary arteries.
Biochem Biophys Res Commun., 283 (2001), pp. 883-887
S. Behrends, A. Mietens, J. Kempfert, M. Koglin, H. Scholz, R. Middendorff.
The expression pattern of nitric oxide-sensitive guanylyl cyclase in the rat heart changes during postnatal development.
J Histochem Cytochem., 50 (2002), pp. 1325-1332
J. Belik, N. Hehne, J. Pan, S. Behrends.
Soluble guanylate cyclase-dependent relaxation is reduced in the adult rat bronchial smooth muscle.
Am J Physiol Lung Cell Mol Physiol., 292 (2007), pp. L699-L703
K.D. Bloch, G. Filippov, L.S. Sanchez, M. Nakane, S.M. de la Monte.
Pulmonary soluble guanylate cyclase, a nitric oxide recep- tor, is increased during the perinatal period.
Am J Physiol, 272 (1997), pp. L400-L406
B. Zhu, S.J. Strada.
The novel functions of cGMP-specific phosphodiesterase 5 and its inhibitors in carcinoma cells and pulmonary/cardiovascular vessels.
Curr Top Med Chem., 7 (2007), pp. 437-454
M.D. Patel, S.D. Katz.
Phosphodiesterase 5 inhibition in chro- nic heart failure and pulmonary hypertension.
Am J Cardiol., 96 (2005), pp. 47M-51M
K.A. Hanson, J.W. Ziegler, S.D. Rybalkin, J.W. Miller, S.H. Abman, W.R. Clarke.
Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity.
Am J Physiol., 275 (1998), pp. L931-L941
T. Reffelmann, R.A. Kloner.
Cardiovascular effects of phospho- diesterase 5 inhibitors.
Curr Pharm Des., 12 (2006), pp. 3485-3494
A.E. Juliana, F.C. Abbad.
Severe persistent pulmonary hyper- tension of the newborn in a setting where limited resources exclude the use of inhaled nitric oxide: successful treatment with sildenafil.
Eur J Pediatr., 164 (2005), pp. 626-629
B.G. Sood, V. Delaney-Black, J.V. Aranda, S. Shankaran.
Aerosolized PGE1: a selective pulmonary vasodilator in neonatal hypoxe- mic respiratory failure results of a Phase I/II open label clini- cal trial.
Pediatr Res., 56 (2004), pp. 579-585
F. Murray, M.R. MacLean, N.J. Pyne.
Increased expression of the cGMP-inhibited cAMP-specific (PDE3) and cGMP binding cGMP- specific (PDE5) phosphodiesterases in models of pulmonary hypertension.
Br J Pharmacol., 137 (2002), pp. 1187-1194
R.P. Jankov, X. Luo, J. Cabacungan, R. Belcastro, H. Frndova, S.J. Lye, et al.
Endothelin-1 and O2-mediated pulmonary hyperten- sion in neonatal rats: a role for products of lipid peroxidation.
Pediatr Res., 48 (2000), pp. 289-298
T. Munzel, C. Sinning, F. Post, A. Warnholtz, E. Schulz.
Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction.
Ann Med., 40 (2008), pp. 180-196
J. Belik, R.P. Jankov, J. Pan, A.K. Tanswell.
Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat.
Free Radic Biol Med., 37 (2004), pp. 1384-1392
T.R. Grover, J.P. Zenge, T.A. Parker, S.H. Abman.
Vascular endothelial growth factor causes pulmonary vasodilation through activa- tion of the phosphatidylinositol-3-kinase-nitric oxide pathway in the late-gestation ovine fetus.
Pediatr Res., 52 (2002), pp. 907-912
T.D. Le Cras, N.E. Markham, R.M. Tuder, N.F. Voelkel, S.H. Abman.
Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure.
Am J Physiol Lung Cell Mol Physiol., 283 (2002), pp. L555-L562
A.I. Papaioannou, K. Kostikas, P. Kollia, K.I. Gourgoulianis.
Clinical implications for vascular endothelial growth factor in the lung: friend or foe?.
Respir Res., 7 (2006), pp. 128
L. Taraseviciene-Stewart, Y. Kasahara, L. Alger, P. Hirth, M.G. Mc, J. Waltenberger, et al.
Inhibition of the VEGF receptor 2 com- bined with chronic hypoxia causes cell death-dependent pul- monary endothelial cell proliferation and severe pulmonary hypertension.
FASEB J., 15 (2001), pp. 427-438
R.T. Schermuly, J.P. Stasch, S.S. Pullamsetti, R. Middendorff, D. Muller, K.D. Schluter, et al.
Expression and function of soluble guan-ylate cyclase in pulmonary arterial hypertension.
Eur Respir J., 32 (2008), pp. 881-891
B. Braam, M.C. Verhaar.
Understanding eNOS for pharmacologi- cal modulation of endothelial function: a translational view.
Curr Pharm Des., 13 (2007), pp. 1727-1740
J. Belik, E. Kerc, M.D. Pato.
Rat pulmonary arterial smooth muscle myosin light chain kinase and phosphatase activi- ties decrease with age.
Am J Physiol Lung Cell Mol Physiol., 290 (2006), pp. L509-L516
K.A. Fagan, M. Oka, N.R. Bauer, S.A. Gebb, D.D. Ivy, K.G. Morris, et al.
Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho- kinase.
Am J Physiol Lung Cell Mol Physiol., 287 (2004), pp. L656-L664
Y. Fukumoto, S. Tawara, H. Shimokawa.
Recent progress in the treatment of pulmonary arterial hypertension: expectation for rho-kinase inhibitors.
Tohoku J Exp Med., 211 (2007), pp. 309-320
J.M. Hyvelin, K. Howell, A. Nichol, C.M. Costello, R.J. Preston, P. McLoughlin.
Inhibition of Rho-kinase attenuates hypoxia- induced angiogenesis in the pulmonary circulation.
Cir Res., 97 (2005), pp. 185-191
P.J. McNamara, P. Murthy, C. Kantores, L. Teixeira, D. Engelberts, T. van Vlie, et al.
Acute vasodilator effects of Rho-kinase inhi- bitors in neonatal rats with pulmonary hypertension unres- ponsive to nitric oxide.
Am J Physiol Lung Cell Mol Physiol., 294 (2008), pp. L205-L213
S. Cassin, T. Tyler, R. Wallis.
The effects of prostaglandin E on fetal pulmonary vascular resistance (38588).
Proc Soc Exp Biol Med., 148 (1975), pp. 584-587
C.W. Leffler, J.R. Hessler, R.S. Green.
The onset of breathing at birth stimulates pulmonary vascular prostacyclin synthesis.
Pediatr Res., 18 (1984), pp. 938-942
O. Danhaive, R. Margossian, T. Geva, S. Kourembanas.
Pulmonary hypertension and right ventricular dysfunction in growth-res- tricted, extremely low birth weight neonates.
J Perinatol., 25 (2005), pp. 495-499
M.C. Walsh-Sukys, J.E. Tyson, L.L. Wright, C.R. Bauer, S.B. Korones, D.K. Stevenson, et al.
Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes.
Pediatrics., 105 (2000), pp. 14-20
G. Boden, C. Bennett.
The management of persistent pul- monary hypertension of the newborn.
Current Paediatrics., 14 (2004), pp. 290-297
S. Hernández-Diaz, L.J. Van Marter, M.M. Werler, C. Louik, A.A. Mitchell.
Risk Factors for Persistent Pulmonary Hypertension of the Newborn.
Pediatrics., 120 (2007), pp. e272-e282
G.G. Konduri, A. Solimano, G.M. Sokol, J. Singer, R.A. Ehrenkranz, N. Singhal, et al.
A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term new- born infants with hypoxic respiratory failure.
Pediatrics., 113 (2004), pp. 559-564
A. Ramachandrappa, L. Jain.
Elective cesarean section: its impact on neonatal respiratory outcome.
Clin Perinatol., 35 (2008), pp. 373-393
L. Jain, D.C. Eaton.
Physiology of fetal lung fluid clearance and the effect of labor.
Semin Perinatol., 30 (2006), pp. 34-43
J. Belik, A.J. Halayko, K. Rao, N.L. Stephens.
Fetal ductus arterio- sus ligation. Pulmonary vascular smooth muscle biochemical and mechanical changes.
Cir Res., 72 (1993), pp. 588-596
S.H. Abman, F.J. Accurso.
Acute effects of partial compression of ductus arteriosus on fetal pulmonary circulation.
Am J Physiol., 257 (1989), pp. H626-H634
R. Levy, A. Matitiau, A.A. Ben, D. Milman, Y. Or, Z. Hagay.
Indomethacin and corticosteroids: an additive constric- tive effect on the fetal ductus arteriosus.
Am J Perinatol., 16 (1999), pp. 379-383
H. Weiss, B. Cooper, M. Brook, M. Schlueter, R. Clyman.
Factors determining reopening of the ductus arteriosus after successful clinical closure with indomethacin.
J Pediatr., 127 (1995), pp. 466-471
M. Respondek, S.R. Weil, J.C. Huhta.
Fetal echocardiography during indomethacin treatment.
Ultrasound Obstet Gynecol., 5 (1995), pp. 86-89
E. Wooltorton.
Persistent pulmonary hypertension of the new-born maternal use of SSRIs.
CMAJ, 174 (2006), pp. 1555-1556
B. Kallen, P.O. Olausson.
Maternal use of selective serotonin re- uptake inhibitors and persistent pulmonary hypertension of the newborn.
Pharmacoepidemiol Drug Saf., 17 (2008), pp. 801-806
C.D. Chambers, S. Hernandez-Diaz, L.J. Van Marter, M.M. Werler, C. Louik, K.L. Jones, et al.
Selective serotonin-reuptake inhi- bitors and risk of persistent pulmonary hypertension of the newborn.
N Engl J Med., 354 (2006), pp. 579-587
E. Fornaro, D. Li, J. Pan, J. Belik.
Prenatal exposure to fluoxe- tine induces fetal pulmonary hypertension in the rat.
Am J Respir Crit Care Med., 176 (2007), pp. 1035-1040
J.W. Ziegler, D.D. Ivy, J.P. Kinsella, S.H. Abman.
The role of nitric oxide, endothelin, and prostaglandins in the transition of the pulmonary circulation.
Clin Perinatol., 22 (1995), pp. 387-403
K.R. Stenmark, E. Gerasimovskaya, R.A. Nemenoff, M. Das.
Hypoxic activation of adventitial fibroblasts: role in vascular remodeling.
Chest., 122 (2002), pp. 326S-S334
R.L. Keller, P. Moore, D. Teitel, S. Hawgood, J. McQuitty, J.R. Fineman.
Abnormal vascular tone in infants and children with lung hypoplasia: Findings from cardiac catheterization and the response to chronic therapy.
Pediatr Crit Care Med., 7 (2006), pp. 589-594
J. Belik, S.T. Davidge, W. Zhang, J. Pan, J.J. Greer.
Airway smooth muscle changes in the nitrofen-induced congenital diaphrag- matic hernia rat model.
Pediatr Res., 53 (2003), pp. 737-743
A.M. Kunig, T.A. Parker, L.M. Nogee, S.H. Abman, J.P. Kinsella.
ABCA3 deficiency presenting as persistent pulmonary hypertension of the newborn.
J Pediatr., 151 (2007), pp. 322-324
S.A. Singh, T. Ibrahim, D.J. Clark, R.S. Taylor, D.H. George.
Persistent pulmonary hypertension of newborn due to congenital capi- llary alveolar dysplasia.
Pediatr Pulmonol., 40 (2005), pp. 349-353
G. Plat, I. Rouquette, M.O. Marcoux, M.C. Bloom, P. Acar, Y. Dulac.
Alveolar capillary dysplasia and persistent pulmonary hyper- tension of the newborn.
Arch Mal Coeur Vaiss., 100 (2007), pp. 458-461
R. Tessler, S. Wu, R. Fiori, C.K. Macgowan, J. Belik.
Sildenafil acutely reverses the hypoxic pulmonary vasoconstriction res- ponse of the newborn pig.
Pediatr Res., 64 (2008), pp. 251-255
J. Belik, R.B. Light.
Effect of increased afterload on right ven- tricular function in newborn pigs.
J Appl Physiol., 66 (1989), pp. 863-869
A.L. Peterson, S. Deatsman, M.A. Frommelt, K. Mussatto, P.C. Frommelt.
Correlation of echocardiographic markers and therapy in persistent pulmonary hypertension of the newborn.
Pediatr Cardiol., 30 (2009), pp. 160-165
V.E. Fabris, M.D. Pato, J. Belik.
Progressive lung and cardiac changes associated with pulmonary hypertension in the fetal rat.
Pediatr Pulmonol., 31 (2001), pp. 344-353
C.P. Ricachinevsky, S.L. Amantea.
Treatment of pulmonary arte- rial hypertension.
J Pediatr (Rio J)., 82 (2006), pp. S153-S165
J.C. Roze, C. Tohier, C. Maingueneau, M. Lefevre, A. Mouzard.
Response to dobutamine and dopamine in the hypotensive very preterm infant.
Arch Dis Child., 69 (1993), pp. 59-63
E.M. Dempsey, K.J. Barrington.
Evaluation and treatment of hypotension in the preterm infant.
Clin Perinatol., 36 (2009), pp. 75-85
Evans N. Which inotrope for which baby? Arch Dis Child Fetal Neonatal Ed. 2006; 91:F213-20.
P. Tourneux, T. Rakza, A. Bouissou, G. Krim, L. Storme.
Pulmonary circulatory effects of norepinephrine in newborn infants with persistent pulmonary hypertension.
J Pediatr., 153 (2008), pp. 345-349
S. Jaillard, V. Houfflin-Debarge, Y. Riou, T. Rakza, S. Klosowski, P. Lequien, et al.
Effects of catecholamines on the pulmonary circulation in the ovine fetus.
Am J Physiol Regul Integr Comp Physiol., 281 (2001), pp. R607-R614
E. Magnenant, S. Jaillard, P. Deruelle, V. Houfflin-Debarge, Y. Riou, S. Klosowski, et al.
Role of the alpha2-adrenoceptors on the pulmonary circulation in the ovine fetus.
W.H. Drummond, G.A. Gregory, M.A. Heymann, R.A. Phibbs.
The independent effects of hyperventilation, tolazoline, and dopamine on infants with persistent pulmonary hypertension.
J Pediatr., 98 (1981), pp. 603-611
M.D. Schreiber, M.A. Heymann, S.J. Soifer.
Increased arterial pH, not decreased PaCO2, attenuates hypoxia-induced pulmonary vasoconstriction in newborn lambs.
Pediatr Res., 20 (1986), pp. 113-117
The Neonatal Inhaled Nitric Oxide Study Grou p. Inhaled Nitric Oxide in Full-Term and Nearly Full-Term Infants with Hypoxic Respiratory Failure. N Engl J Med. 1997;336:597-604. in press.
D.L. Wessel, I. Adatia, L.J. Van Marter, J.E. Thompson, J.W. Kane, A.R. Stark, et al.
Improved oxygenation in a randomized trial of inhaled nitric oxide for persistent pulmonary hypertension of the newborn.
Pediatrics., 100 (1997), pp. E7
Committee on Fetus and Newborn. Use of Inhaled Nitric Oxide. Pediatrics. 2000;106:344-5. in press.
D.N. Cornfield, R.C. Maynard, R.A. deRegnier, S.F. Guiang III, J.E. Barbato, C.E. Milla.
Randomized, controlled trial of low- dose inhaled nitric oxide in the treatment of term and near- term infants with respiratory failure and pulmonary hyper- tension.
Pediatrics., 104 (1999), pp. 1089-1094
D. Davidson, E.S. Barefield, J. Kattwinkel, G. Dudell, M. Damask, R. Straube, et al.
Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose- response, multicenter study.
The I-NO/PPHN Study Grou p. Pediatrics., 101 (1998), pp. 325-334
R.H. Clark, T.J. Kueser, M.W. Walker, W.M. Southgate, J.L. Huckaby, J.A. Perez, et al.
Low-dose nitric oxide therapy for per- sistent pulmonary hypertension of the newborn Clinical Inhaled Nitric Oxide Research Group.
N Engl J Med., 342 (2000), pp. 469-474
J. Albert, P. Harbut, S. Zielinski, S. Ryniak, C. Gillis-Haegerstrand, R. Lindwall, et al.
Prolonged exposure to inhaled nitric oxi- de does not affect haemostasis in piglets.
Intensive Care Med., 33 (2007), pp. 1594-1601
M. Beghetti, C. Sparling, P.N. Cox, D. Stephens, I. Adatia, Inhaled NO.
inhibits platelet aggregation and elevates plasma but not intraplatelet cGMP in healthy human volunteers.
Am J Physiol Heart Circ Physiol., 285 (2003), pp. H637-H642
A.P. Bos, D. Tibboel, V.C. Koot, F.W. Hazebroek, J.C. Molenaar.
Persistent pulmonary hypertension in high-risk congenital diaphragmatic hernia patients: incidence and vasodilator therapy.
J Pediatr Surg., 28 (1993), pp. 1463-1465
T. Nakayama, H. Shimada, S. Takatsuki, H. Hoshida, T. Ishikita, H. Matsuura, et al.
Efficacy and limitations of continuous intra- venous epoprostenol therapy for idiopathic pulmonary arte- rial hypertension in Japanese children.
Circ J., 71 (2007), pp. 1785-1790
R. Ewert, C. Schaper, M. Halank, S. Glaser, C.F. Opitz.
Inhalative iloprost – pharmacology and clinical application.
Expert Opin Pharmacother., 10 (2009), pp. 2195-2207
H.H. Leuchte, J. Behr.
Iloprost for idiopathic pulmonary arterial hypertension.
Expert Rev Cardiovasc Ther., 3 (2005), pp. 215-223
M. Ehlen, B. Wiebe.
Iloprost in persistent pulmonary hyperten- sion of the newborn.
Cardiol Young., 13 (2003), pp. 361-363
U. Chotigeat, S. Jaratwashirakul.
Inhaled iloprost for severe persistent pulmonary hypertension of the newborn.
J Med Assoc Thai., 90 (2007), pp. 167-170
U. Krishnan.
Management of pulmonary arterial hypertension in the neonatal unit.
Cardiol Rev., 18 (2010), pp. 73-75
A. Vargas-Origel, G. Gomez-Rodriguez, C. Aldana-Valenzuela, M.M. Vela-Huerta, S.B. Alarcon-Santos, N. Amador-Licona.
The use of sildenafil in persistent pulmonary hypertension of the newborn.
Am J Perinatol., 27 (2010), pp. 225-230
R.H. Steinhorn, J.P. Kinsella, C. Pierce, G. Butrous, M. Dilleen, M. Oakes, et al.
Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension.
J Pediatr., 155 (2009), pp. 841-847
M.R. Bentlin, A. Saito, A.K. De Luca, G. Bossolan, R.C. Bonatto, A.S. Martins, et al.
[Sildenafil for pulmonary hypertension treatment after cardiac surgery].
J Pediatr (Rio J)., 81 (2005), pp. 175-178
E.C. Oliveira, C.F. Amaral.
Sildenafil in the management of idio- pathic pulmonary arterial hypertension in children and ado- lescents.
J Pediatr (Rio J)., 81 (2005), pp. 390-394
L. Leibovitch, I. Matok, G. Paret.
Therapeutic applications of sildenafil citrate in the management of paediatric pulmonary hypertension.
Drugs., 67 (2007), pp. 57-73
C. Stocker, D.J. Penny, C.P. Brizard, A.D. Cochrane, R. Soto, L.S. Shekerdemian.
Intravenous sildenafil and inhaled nitric oxide: a randomised trial in infants after cardiac surgery.
Intensive Care Med., 29 (2003), pp. 1996-2003
P. Shah, A. Ohlsson.
Sildenafil for pulmonary hypertension in neonates.
Cochrane Database Syst Rev., (2007), pp. CD005494
R.B. Tessler, M. Zadinello, H. Fiori, M. Colvero, J. Belik, R.M. Fiori.
Tadalafil improves oxygenation in a model of newborn pulmonary hypertension.
Pediatr Crit Care Med., 9 (2008), pp. 330-332
S. Lakshminrusimha, N.F. Porta, K.N. Farrow, B. Chen, S.F. Gugino, V.H. Kumar, et al.
Milrinone enhances relaxation to prosta- cyclin and iloprost in pulmonary arteries isolated from lam- bs with persistent pulmonary hypertension of the newborn.
Pediatr Crit Care Med., 9 (2009), pp. 106-112
P.J. McNamara, F. Laique, S. Muang-In, H.E. Whyte.
Milrinone improves oxygenation in neonates with severe persis- tent pulmonary hypertension of the newborn.
J Crit Care., 21 (2006), pp. 217-222
D. Bassler, K. Choong, P. McNamara, H. Kirpalani.
Neonatal per- sistent pulmonary hypertension treated with milrinone: four case reports.
Biol Neonate., 1 (2006), pp. 1-5
A.A. Rosenberg, J. Kennaugh, S.L. Koppenhafer, M. Loomis, B.A. Chatfield, S.H. Abman.
Elevated immunoreactive endo- thelin-1 levels in newborn infants with persistent pulmonary hypertension.
J Pediatr., 123 (1993), pp. 109-114
C. Goissen, L. Ghyselen, P. Tourneux, G. Krim, L. Storme, P. Bou, et al.
Persistent pulmonary hypertension of the newborn with transposition of the great arteries: successful treatment with bosentan.
Eur J Pediatr., 167 (2008), pp. 437-440
N. Nakwan, D. Choksuchat, R. Saksawad, P. Thammachote.
Successful treatment of persistent pulmonary hypertension of the newborn with bosentan.
Acta Paediatr., 98 (2009), pp. 1683-1685
S. Lakshminrusimha, J.A. Russell, S. Wedgwood, S.F. Gugino, J.A. Kazzaz, J.M. Davis, et al.
Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension.
Am J Respir Crit Care Med., 174 (2006), pp. 1370-1377
G.G. Konduri, D.C. Garcia, N.J. Kazzi, S. Shankaran.
Adenosine infusion improves oxygenation in term infants with respira- tory failure.
Pediatrics., 97 (1996), pp. 295-300
C. Ng, O. Franklin, M. Vaidya, C. Pierce, A. Petros.
Adenosine infusion for the management of persistent pulmonary hyper- tension of the newborn.
Pediatr Crit Care Med., 5 (2004), pp. 10-13
A. Motti, C. Tissot, P.C. Rimensberger, A. Prina-Rousso, Y. Aggoun, M. Berner, et al.
Intravenous adenosine for refractory pul- monary hypertension in a low-weight premature newborn: a potential new drug for rescue therapy.
Pediatr Crit Care Med., 7 (2006), pp. 380-382
F. Raimondi, F. Migliaro, L. Capasso, G. Ausanio, M. Bisceglia, P. Giliberti, et al.
Intravenous magnesium sulphate vs. inhaled nitric oxide for moderate, persistent pulmonary hypertension of the newborn. A Multicentre, retrospective study.
J Trop Pediatr., 54 (2008), pp. 196-199
J.J. Ho, G. Rasa.
Magnesium sulfate for persistent pulmonary hypertension of the newborn.
Cochrane Database Syst Rev., (2007), pp. CD005588
J.P. Kinsella, S.H. Abman.
High-frequency oscillatory ventilation augments the response to inhaled nitric oxide in persistent pulmonary hypertension of the newborn: Nitric Oxide Study Group.
Chest., 114 (1998), pp. 105
R.D. Findlay, H.W. Taeusch, F.J. Walther.
Surfactant replace- ment therapy for meconium aspiration syndrome.
Pediatrics., 97 (1996), pp. 48-52
A. Lotze, B.R. Mitchell, D.I. Bulas, E.M. Zola, R.A. Shalwitz, J.H. Gunkel.
Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in Term Infants Study Group.
J Pediatr., 132 (1998), pp. 40-47

Como citar este artigo: Cabral JE, Belik J. Persistent pulmonary hypertension of the newborn: recent advances in pathophysiology and treatment. J Pediatr (Rio J). 2013;89:226–42.

Copyright © 2013. Sociedade Brasileira de Pediatria
Jornal de Pediatria

Receba a nossa Newsletter

Opções de artigo