ORIGINAL ARTICLE

Frequency of perfume in 398 children’s cosmetics

Marjorie Uber 🗞 *, Mariana A.P. Morgan 🗞, Maria Carolina Schneider 🗞, Izabella R.R. Gomes 🗞, Renata R. Imoto 🗞, Vânia O. Carvalho 🗞, Kerstin T. Abagge 🗞

Universidade Federal do Paraná (UFPR), Departamento de Pediatria, Divisão de Dermatologia Pediátrica, Curitiba, PR, Brazil

Received 7 August 2023; accepted 1 November 2023
Available online xxx

Abstract

Objective: Perfume (Parfum) or fragrance is a natural or synthetic cosmetic ingredient added to emit a pleasant aroma or to improve the odor of a cosmetic formula. It is a mixture of substances, not revealed by the manufacturer, which may contain ingredients with allergenic potential, endocrine disruptors, and other possible harmful effects on human health. This study aims to analyze children’s cosmetics labels to assess the presence of Perfume.

Methods: The researchers randomly visited points of sale in Curitiba, the capital of a southern Brazilian state; in order to catalog the largest possible number of children’s cosmetics items.

Results: 398 children’s cosmetics were analyzed and found Parfum on 295 (74.1 %) of the labels, including 90.4 and 79.1 % of the shampoos and wet wipes, respectively.

Conclusion: Exposure of children’s skin to fragrances can lead to local side effects such as allergies, but also to systemic effects, and the lack of knowledge of the general population and health professionals about its possible deleterious effects emphasizes the importance of changes in the regulation of cosmetics aiming to reduce the use of this ingredient.

© 2023 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

KEYWORDS

Cosmetics; Cosmetic labeling; Perfume; Endocrine disruptors; Allergens

1 Introduction

Exposure to chemicals begins prenatally and continues after birth, primarily through personal care products. This exposure can negatively impact children’s health due to the immaturity of organs and systems. Children’s skin has a thinner stratum corneum and therefore is more susceptible to the penetration of irritants and allergens. Also, children have a higher body surface-to-weight ratio which leads to greater absorption of substances applied to the skin.¹

1.1 In most countries, regulations on children’s cosmetics differ from that of adults. But even so, they are based on current but still limited scientific knowledge about the effect of cosmetic ingredients. After years of using a certain component, it is possible that new evidence can refute its safety and it would be prohibited.

A fragrance is a mixture of substances added to provide a pleasant aroma or mask an unpleasant odor to a formula, and identified in a cosmetic ingredient list simply as “Parfum”.²,³ Its origin can be natural, derived from organic

* Corresponding author.
E-mail: marjorieu@gmail.com (M. Uber).

https://doi.org/10.1016/j.jped.2023.11.002
0021-7557/© 2023 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: M. Uber, M.A. Morgan, M.C. Schneider et al., Frequency of perfume in 398 children’s cosmetics, Jornal de Pediatria (2023), https://doi.org/10.1016/j.jped.2023.11.002
Generally, the exact components of the mixture are not disclosed by the manufacturer, since it’s not mandatory by the legislation – it’s a “trade secret” supported by marketing strategies, which makes information about the safety of the compounds limited. Cosmetic label regulation varies worldwide, and in many countries, including Brazil, there are specific lists of ingredients that must be disclosed separately in the label (e.g. Amyl cinnamal, Coumarin, Eugenol, Geraniol, Benzyl benzoate, Citronellol, Farnesol, -Limonene, Linalool), whilst others are disclosed only as “Parfum”. Since fragrances are frequently used in daily personal care products worldwide, the present work describes its presence on the labels of over-the-counter children’s products in the southern Brazilian capital and aims to inform the population and health professionals about its frequency and potential risks.

Methods

From February to December 2021, the researchers randomly visited various points of sale (pharmacies, cosmetics stores and markets) in a range of 15 km from downtown Curitiba, the capital of a southern Brazilian state with a population of 1.7 million, in order to catalog the largest possible number of children’s cosmetics items. All cosmetics found on those stores, in each category, were included, as long as infant use was expressly indicated in the label, regardless of price or other characteristics.

The following categories of children’s cosmetics were included: liquid soaps, bar soaps, shampoos, conditioners, moisturizers, diaper rash prevention creams, wet wipes, sunscreens and repellents. All evaluated products were indicated for use by children (packages stated “children”, “kids” or “baby”).

The labels were photographed and the lists of ingredients in the INCI nomenclature (International Nomenclature of Cosmetic Ingredients) were extracted to a Microsoft Excel software spreadsheet. The fragrances were identified in the ingredient list with the term “Parfum/Fragrance”.

As this is not a study with humans, there was no need to submit the study to the ethics committee.

Results

Three hundred and ninety-eight products were evaluated and 295 (74.1 %) had Parfum/Fragrance on their labels. The total number of products included in each category and the number and percentage of those that had Parfum/Fragrance in their composition are described in Table 1.

Discussion

Shampoos, wet wipes, and conditioners were the products that most had parfum in their composition and are widely used in the pediatric age group.

In 2008, White and McFadden analyzed 38 cosmetic products marketed for babies and found that 84 % (32) of them had fragrance chemicals, more than the present results - 74.1 % (295). This may be explained because the authors only included “parfum”, but not other ingredients separately disclosed.

Phthalates, synthetic musks, and “sensitizers” are the most common groups of synthesized fragrance mixtures. In cosmetics, phthalates are used to prevent rapid evaporation of the scent, but they are also ingredients for the plastic industry, adhesives and detergents. Synthetic musks are mainly used for fragrance and fixation in cosmetics and household products, and sensitizers are chemicals with a high probability of causing allergic reactions in humans.

Besides allergy, other effects have been related to fragrance compounds in various studies, such as endocrine disruption, genital malformations, infertility, precocious puberty, and neurotoxicity and carcinogenicity.

Animal data point to a high sensitivity of the development of the hypothalamic-pituitary-gonadal axis to endocrine-disrupting chemicals, which have already been detected in the placenta and amniotic fluid and are associated with impaired fetal development. There has been an increase in the age of onset of puberty in girls and boys over the last 30 years and the exposure to endocrine-disrupting chemicals, in the environment and by cosmetics, may be related. Exposure to fragrance compounds may also be related to fetal growth restriction, as shown by the study by Zhao et al., 2016, with 220 mother-newborn pairs, including 110 with fetal growth restriction newborns and 110 normal newborns. Maternal urine samples were collected during the third trimester and tested for 5 phthalate ester metabolites. The authors found alterations in placental IGF2 DNA methyl- ation, that could be part of a pathway to adverse fetal growth.

Besides phthalates, synthetic polycyclic musks may display estrogenic activities in vitro and in vivo effects depending on specific receptors. Also, low concentrations of some synthetic musks were found to have anti-progestogenic effects.

Prenatal exposure to phthalates, measured by phthalate metabolite concentrations in maternal urine, was associated with behavior disorders, like problem-externalization, emotional control, aggression, and depression in children aged...

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of products</th>
<th>N of products with Parfum (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shampoos</td>
<td>83</td>
<td>75 (90.4 %)</td>
</tr>
<tr>
<td>Wet wipes</td>
<td>91</td>
<td>72 (79.1 %)</td>
</tr>
<tr>
<td>Hair conditioners</td>
<td>61</td>
<td>54 (88.5 %)</td>
</tr>
<tr>
<td>Liquid soaps</td>
<td>46</td>
<td>36 (78.3 %)</td>
</tr>
<tr>
<td>Diaper rash creams</td>
<td>28</td>
<td>13 (46.4 %)</td>
</tr>
<tr>
<td>Moisturizers</td>
<td>28</td>
<td>13 (46.4 %)</td>
</tr>
<tr>
<td>Insect repellents</td>
<td>20</td>
<td>11 (55.0 %)</td>
</tr>
<tr>
<td>Bar soaps</td>
<td>12</td>
<td>11 (91.7 %)</td>
</tr>
<tr>
<td>Sunscreens</td>
<td>29</td>
<td>10 (34.5 %)</td>
</tr>
</tbody>
</table>
A synthesis of Paradoxically, haptens are small molecules that can, when combined to atopy-related proteins, bind to receptors and alter the structure of the hapten. This can lead to immune responses, such as allergies, irritant dermatitis, dyschromia, and photosensitivity. Irritant or allergic contact dermatitis occurs at the site of application, such as in the armpits when using perfumed deodorants, or due to fragrances in other personal care products. Allergic-type dermatitis, on the other hand, has urticaria as a common presentation and frequently occurs after exposure to Balsam of Peru (Myroxylon pereirae). The North American Contact Dermatitis Group estimates that allergic contact dermatitis occurs in 5.3% to 11.3% of the general population. In the analysis of the main allergens in patch tests in 2015/2016, three screening tests for fragrances were found relevant: Fragrance-Mix-1, Fragrance-Mix-2, and Myroxylon pereirae. Sensitive areas like the perineal region are more susceptible to allergic contact dermatitis by fragrances from wet wipes. In the present study, 79.1% of the 91 wet wipes contained fragrance. Yu et al. in a North American study found the ingredient in 33.3% of the 63 wet wipes analyzed. This difference can be explained because some products do not include the term “fragrance” on the ingredients, according to each country’s legislation, but the individual components of the fragrance, such as linalool or geraniol, make identification difficult.

In fact, a limitation of this study is that the authors only searched for the words “parfum” and “fragrance” in the cosmetics’ ingredients lists, but individual fragrance components were not included. Therefore, the number of products containing fragrances is also likely to be higher. Due to the potential health risks posed by fragrances, in the United States and Europe, initiatives to monitor and regulate fragrances in children’s products are growing. Similar initiatives should be adopted worldwide.

The lack of knowledge of the general population and health professionals, added to the remarkable presence of perfume in the daily routine of families, emphasizes the importance of further studies in this area. Health professionals and Pediatric Societies must demand improvement in regulation processes and ongoing monitoring to ensure the safety of children’s skin products on the market.

Conflicts of interest

The authors declare no conflicts of interest.

Funding

No funding was received to assist in the preparation of this manuscript.

Authors’ contributions

Maria Carolina Schneider, Marjorie Uber and Renata R. Imoto acquired the data. Izabella R. Gomes, Maria Carolina Schneider, Marjorie Uber, Renata R. Imoto, Kerstin T. Abagge and Vânia O. Carvalho involved in design. Marjorie Uber and Mariana A. P. Morgan interpreted the data. Marjorie Uber, Renata R. Imoto, Izabella R. Gomes and Mariana A. P. Morgan drafted the manuscript. Vânia O. Carvalho and Kerstin T. Abagge critically reviewed the article.

References

