Initial evaluation of a multidisciplinary pediatric aerodigestive program in a Brazilian hospital: challenges and mitigation strategies

Débora Bressan Pazinatto, Maria Angela Bellomo Brandão, Flávia Lima Peixoto Costa, Rebecca Maunsell

Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil

Received 11 March 2023; accepted 17 May 2023
Available online xxx

Abstract

Objective: To identify clinical and epidemiological characteristics of children evaluated by the pediatric aerodigestive program at the beginning of its activity, describe challenges in follow-up, and suggest mitigation strategies.

Methods: A case series was conducted describing the first 25 patients discussed by the aerodigestive team from a Brazilian quaternary public university hospital between April 2019 and October 2020. The median follow-up was 37 months.

Results: During the study period 25 children were seen by the group and the median age at first assessment was 45.7 months old. Eight children had a primary airway abnormality, five had a tracheostomy. Nine children had genetic disorders and one had esophageal atresia. Dysphagia was present in 80% of the patients, 68% had a history of chronic or recurrent lung disease, 64% had a gastroenterological diagnosis and 56% had neurological impairment. Moderate to severe dysphagia was identified in 12 children and 7 of these had an exclusive oral diet at the time. The majority of children (72%) had 3 or more comorbidities. Following team discussion, a change in feeding strategy was suggested in 56% of the children. The most frequently ordered exam was pHmetry (44%) and gastrostomy was the surgical procedure with the longest waiting list.

Conclusions: Dysphagia was the most frequent issue encountered in this initial group of aerodigestive patients. Pediatricians caring for these children must be involved in aerodigestive team discussions and hospital policies must be revised to facilitate access to exams and procedures needed for this population.

© 2023 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

KEYWORDS
Deglutition disorders; Child; Patient care team; Feeding and eating disorders; Pediatrics

* Corresponding author.
E-mail: deborabpazinatto@gmail.com (D.B. Pazinatto).

https://doi.org/10.1016/j.jped.2023.05.012
0021-7557/© 2023 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: D.B. Pazinatto, M.A. Brandão, F.L. Costa et al., Initial evaluation of a multidisciplinary pediatric aerodigestive program in a Brazilian hospital: challenges and mitigation strategies, Jornal de Pediatria (2023), https://doi.org/10.1016/j.jped.2023.05.012
Introduction

Caring for children with chronic diseases is a reality due to advances in pediatric and neonatal intensive care. In the United States pediatric aerodigestive programs have been developed to meet the necessities of children who demand evaluation by multiple specialties since 1999. The main goals of these programs are: to reduce the need for repeated visits, improve communication among specialists and families, rationalize invasive or multiple exams, and reduce hospitalizations and diagnosis time.

In 2018, Boesch et al., provided a consensus on pediatric aerodigestive programs. They described the program's functions and structure and defined the aerodigestive patient as "a child with a combination of multiple and interrelated congenital and/or acquired conditions affecting airway, breathing, feeding, swallowing, or growth that require a coordinated interdisciplinary diagnostic and therapeutic approach to achieve optimal outcomes. This includes but is not limited to, structural and functional airway and upper gastrointestinal tract disease, lung disease because of congenital or developmental abnormality or injury, swallowing dysfunction, feeding problems, genetic diseases, and neurodevelopmental disability". Feeding and swallowing difficulties are an important and frequent issue in this group of children and may be related both to congenital and acquired conditions. Assessment of aspiration and a safe and effective feeding route is essential. Simultaneous endoscopy of the airway and digestive tracts known as "triple endoscopy" can reduce the number of anesthesia and facilitate the specialists' live discussion.

There are currently in the United States of America (USA) around 50 aerodigestive programs, however, there are no published studies of pediatric aerodigestive teams in South America. In Brazil, building an aerodigestive team is particularly challenging due to limited public health financing and the fact that 70% of the population relies on the public health system. Pediatric specialists are rarely at the same healthcare center, making communication difficult. Highly complex patients are inevitably followed in tertiary and quaternary university hospitals, and non-medical therapies, on the other hand, are carried out locally in primary or secondary healthcare centers. Additionally, the availability of non-medical evaluations and therapies vary greatly from one city to another both in the tertiary and basic healthcare services.

In April 2019, the Pediatric Otorhinolaryngology, Gastroenterology, and Pneumology teams from a quaternary public university hospital started a multidisciplinary pediatric aerodigestive team with monthly reunions. The group anticipated that following the American model under local restrictions on resources would be difficult and, an overview of these patients would help understand how the establishment of this program could be prioritized and tailored to local needs.

This study aims to identify clinical and epidemiological characteristics of the first children evaluated by the pediatric aerodigestive team in a Brazilian quaternary public hospital and ultimately describe challenges in follow-up and suggest mitigation strategies to adapt multidisciplinary programs to local needs and regional populations.

Methods

A case series study of all patients evaluated by the aerodigestive team at the beginning of its activity was carried out after approval from the institutional Ethics Committee (79823017.8.000.5404). The team consisted of attending physicians and residents from the pediatric Otorhinolaryngology, Pneumology, and Gastroenterology departments, in addition to a speech-language pathologist (SLP) specialized in pediatric swallowing dysfunction. Monthly meetings were set, and 2 or 3 patients were assigned to be discussed in each session.

Patients were selected by any of the specialties that were attending these patients either in their outpatient clinic or by demand of the pediatric ward. Criteria for selection followed the consensus definition. Retrospective data was collected from all patients evaluated by the multidisciplinary team from April 2019 to October 2020 and follow-up was updated up to January 2023.

All patients were submitted to the clinical and instrumental evaluation of dysphagia through a fiberoptic endoscopic evaluation of swallowing (FEES) by the otolaryngologist and SLP prior to the meeting. A 3.2mm Machida flexible fiberoptic endoscope was used. An anatomical evaluation of nasal cavities, pharynx and larynx was performed, as well as a functional assessment of vocal cord mobility, integrity of laryngopharyngeal sensation, secretion management, swallowing frequency and presence of laryngeal penetration and/or aspiration. For children with an oral diet, saliva and food in different stained consistencies were tested. For children with suspected saliva aspiration, a modified FEES was performed using saliva stained with blue food coloring. It was also possible to evaluate breastfeeding children. Dysphagia was classified in grades according to the Pediatric Dysphagia Assessment Protocol (PAD-PED). Patients were classified as normal swallowing, mild, moderate, or severe dysphagia.

According to this classification, moderate and severe dysphagia implies impairment of nutrition and/or hydration, and severe dysphagia indicates a high risk of aspiration, which contraindicates oral feeding.

Patient demographic and clinical data were extracted. The length of time taken to perform exams and procedures the authors also retrieved from medical charts and were updated to January 2023.

Data were analyzed descriptively and inferentially using the Statistical Package for the Social Sciences (SPSS 25.0 software). For all analyses, a p-value < 0.05 was considered indicative of statistical significance. For qualitative variables, absolute and relative frequencies were calculated. For quantitative variables, central tendency and position measures were determined. The chi-square test was used for the inferential analysis of qualitative variables, while Mann-Whitney and Kruskal-Wallis tests were used for comparing qualitative and quantitative variables between two and multiple independent groups, respectively.

Results

Twenty-five cases were evaluated by the aerodigestive team between April 2019 and October 2020. There were 13 males and 12 females aged from 1 to 207 months old. The median
age was 29 months old (IQR 6.5-63). Seventeen patients were seen in 2019 and eight were seen in 2020. There was a significant difference in the age of patients assessed from one year to the other: the median age of 40 months in 2019 and 6.5 months in 2020 (p = 0.001).

Table 1 describes the profile of the patients and Figure 1 summarizes the clinical characteristics of patients.

Clinical and instrumental evaluation of swallowing with FEES showed dysphagia in 20 of the 25 patients (80%). Of the twenty patients with dysphagia, 12 had moderate or severe dysphagia and 75% (9/12) of them were being fed orally (seven exclusively). The median age of children with moderate dysphagia was 21 months old and 63.5 months old for those with severe dysphagia. There was no difference in age comparing children with grades of dysphagia (p = 0.339).

Over half of the patients (14 children) underwent a change in feeding route after group evaluation. Oral feeding was contraindicated in 10, one needed gastrostomy due to impaired weight gain secondary to craniofacial malformation and limited oral intake (patient 13), two (patients 14 and 20) needed gastrostomy due to moderate dysphagia and prolonged time of nasoenteric tube (NET), and one that was using NET progressed to oral feeding (patient 24 on Table 1). Of the 10 patients that were considered unsafe to feed orally, 9 had moderate or severe dysphagia and one had severe esophageal stenosis (patient 19). Patients with an indication for gastrostomy used NET until the surgery was performed.

The neurologic disease was present in over half of the patients (14). Median age was 36 and 20 months old for neurologically and not neurologically impaired children, respectively, with no statistical difference (p = 0.366). All patients with moderate or severe dysphagia had a neurologic disease and only two patients with a neurological condition had mild dysphagia (patients 12 and 19 on Table 1).

There was a high prevalence of comorbidities. Eighteen (72%) had three or more comorbidities, and all but one child had at least two comorbidities. The majority of patients (68%) had a history of chronic and/or recurrent lung disease, and 64% had gastrointestinal (GI) disease. Four patients had a confirmed genetic disorder and another five were undergoing investigation.

There were eight patients with primary upper airway disease: one with laryngeal web (a tracheostomized child), two with laryngomalacia (one already submitted to supraglottoplasty), one with obstructive sleep apnea, one with bilateral vocal cord paralysis, one with tracheomalacia, one with grade III subglottic stenosis (tracheostomized child) and one with mid nasal stenosis. Five children had tracheostomies, and another was submitted to tracheostomy for bilateral vocal cord paralysis after team evaluation.

The mean follow-up time was 37 months (standard deviation 12.72). Two patients with gastrostomy indication lost follow-up in less than 3 months due to missing appointments and did not return when summoned (patients 4 and 11). Surgical procedures performed were one tracheostomy, two microlaryngoscopy and bronchoscopy (MLB), five GI endoscopies, seven gastrostomies, and one laryngotracheal reconstruction with costal cartilage graft for laryngeal web repair.

Table 2 shows the exams and surgeries requested and how long it took for them to be performed. Gastrostomy was the procedure that had the longest waiting time and videofluoroscopic swallowing study (VFSS) had the lowest performance rate. Airway endoscopy (MLB) and gastrostomy or GI endoscopy were ordered in four patients. Only one of these had a triple endoscopy.

The mean time to perform surgical procedures was 296.9 days for patients evaluated in 2019 and 88.5 for patients in 2020. Regarding the exams, the time was 101 and 9 days, respectively.

During follow-up, some procedures were revised and called off: 2 MLB (patients 1 and 9) and 1 GI endoscopy for patient 21. Phmetry was called off in patient 18 after gastrostomy and was attempted but unsuccessful in the patient with Freeman-Sheldon syndrome.

Discussion

Aerodigestive programs with interdisciplinary care models are effective for diagnosis optimization and cost reduction in international studies. However, there are no reports on pediatric aerodigestive programs in South America, even in advanced tertiary and quaternary centers. The main strength of this study is being the first one to evaluate a pediatric aerodigestive program in Brazil and describe the profile of patients and difficulties faced.

In this case series, FESS diagnosed dysphagia in most patients (80%). Dysphagia prevalence can vary in aerodigestive clinics, depending on patient profiles and program characteristics. Gendler et al., reported dysphagia in 62% and aspiration in 42% of patients, using FESS to assess swallowing. Their sample had more esophageal atresia and tracheoesophageal fistula cases (56%) and fewer patients with neurologic disease (36%). Due to a scarcity of SLPs specialized in pediatric dysphagia in the studied country, even patients with alternative feeding arrived without assessment or rehabilitation. So, all underwent swallowing evaluation before discussion and this may have contributed to the high dysphagia prevalence. Dysphagia assessment is crucial for patients with associated comorbidities, and low prevalence reports may reflect inadequate investigation. Fuladi et al. reported dysphagia only in 27% of children but otolaryngologists and SLPs were not part of their team nor were patients assessed instrumentally. Most of their patients had esophageal atresia with tracheoesophageal fistula (82%) and there were no reports of children with neurologic disease in the sample.

Airway problems were present in one-third of the patients, similar to Rotsides et al. (30%) and Gendler et al. (28%). Airway surgeons are often part of aerodigestive teams due to their role in controlling inflammatory factors that affect surgical outcomes. At the hospital, airway patients have a dedicated and highly active outpatient clinic. The agility needed to prepare patients for surgery combined with the lack of slots in the aerodigestive clinic, may have led to occasional consultations by pneumology or gastroenterology in their specific outpatient clinics and not in the aerodigestive one.

Dysphagia is a potential risk for chronic pulmonary aspiration and respiratory issues in children. In this series, 68% had chronic lung disease and/or recurrent pneumonia. Arslan et al. conducted a VFSS study of 274 children with dysphagia. Most of the patients had neuromuscular or
Table 1 Characteristics of patients evaluated: age, diagnosis, feeding route and proposition of change in feeding route after group evaluation.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (months)</th>
<th>Neurological or psychiatric impairment</th>
<th>Genetic disorder</th>
<th>GI disease</th>
<th>Pulmonary disease</th>
<th>ENT condition</th>
<th>Dysphagia</th>
<th>Feeding route</th>
<th>Change in feeding route</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97</td>
<td>Autism spectrum disorder</td>
<td></td>
<td>GERD</td>
<td>Asthma</td>
<td>Mild</td>
<td>Oral</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>46</td>
<td>Under investigation</td>
<td></td>
<td>Under investigation</td>
<td>Recurrent pneumonia</td>
<td>Mild</td>
<td>Oral</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>207</td>
<td>Cerebral Palsy Epilepsy syndrome</td>
<td></td>
<td>Recurrent pneumonia</td>
<td>Severe</td>
<td>Oral + NET</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>123</td>
<td>Epilepsy syndrome</td>
<td></td>
<td>Impaired weight gain GERD</td>
<td>Severe</td>
<td>Oral</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>37</td>
<td>Cerebral Palsy Epilepsy syndrome</td>
<td></td>
<td>GERD</td>
<td>Tracheostomy</td>
<td>Oral</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Under investigation</td>
<td></td>
<td>Geroid disorder</td>
<td></td>
<td>Oral</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>22q11 microdeletion syndrome Down Syndrome</td>
<td></td>
<td>Recurrent wheezing</td>
<td>Tracheostomy - Laryngeal web</td>
<td>Oral</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>Down Syndrome</td>
<td></td>
<td>Recurrent pneumonia</td>
<td>Tracheostomy</td>
<td>Oral</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>Down Syndrome</td>
<td></td>
<td>Pancroenteritis</td>
<td>Apneic spells</td>
<td>Oral</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>74</td>
<td>Down Syndrome</td>
<td></td>
<td>Bronchopulmonary dysplasia</td>
<td>Mild</td>
<td>Oral</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>87</td>
<td>Epilepsy syndrome Autism spectrum disorder</td>
<td></td>
<td>Bronchopulmonary dysplasia</td>
<td>Severe</td>
<td>Oral</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient</td>
<td>Age (months)</td>
<td>Neurological or psychiatric impairment</td>
<td>Genetic disorder</td>
<td>GI disease</td>
<td>Pulmonary disease</td>
<td>ENT condition</td>
<td>Dysphagia</td>
<td>Feeding route</td>
<td>Change in feeding route</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------</td>
<td>------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>12</td>
<td>38</td>
<td>Cerebral Palsy Epilepsy syndrome</td>
<td></td>
<td></td>
<td>Recurrent pneumonia</td>
<td>mild</td>
<td>oral</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>Freeman-Sheldon Syndrome</td>
<td>Impaired weight gain</td>
<td></td>
<td>Mild Oral</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>35</td>
<td>Epilepsy syndrome Under investigation</td>
<td>Impaired weight gain</td>
<td></td>
<td>Recurrent pneumonia</td>
<td>Tracheostomy</td>
<td>Moderate</td>
<td>NET</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>168</td>
<td>Epilepsy syndrome</td>
<td>GERD Gastrointestinal motility disorder</td>
<td>Impaired weight gain</td>
<td>Asthma Obstructive Sleep Apnea</td>
<td>Severe</td>
<td>GT</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>Cerebral Palsy Epilepsy syndrome</td>
<td>Chronic functional constipation</td>
<td></td>
<td>Severe Oral</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>40</td>
<td>Epilepsy syndrome</td>
<td>Multifactorial chronic constipation GERD</td>
<td></td>
<td>Recurrent pneumonia</td>
<td>Severe</td>
<td>Oral</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>Epilepsy syndrome Under investigation</td>
<td>Impaired weight gain</td>
<td>Apneic spells</td>
<td>Moderate Oral</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>Epilepsy syndrome</td>
<td>Esophageal atresia + tracheoesophageal fistula Esophageal stenosis GERD Recurrent vomiting Impaired weight gain</td>
<td>Recurrent wheezing</td>
<td>Tracheomalacia</td>
<td>Mild</td>
<td>Oral + GT</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>Cerebral palsy</td>
<td>Impaired weight gain</td>
<td>Bronchopulmonary dysplasia Pulmonary hypertension</td>
<td>Tracheostomy Subglottic stenosis Grade III</td>
<td>Moderate</td>
<td>NET</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Patient</td>
<td>Age (months)</td>
<td>Neurological or psychiatric impairment</td>
<td>Genetic disorder</td>
<td>GI disease</td>
<td>Pulmonary disease</td>
<td>ENT condition</td>
<td>Dysphagia</td>
<td>Feeding route</td>
<td>Change in feeding route</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Recurrent wheezing</td>
<td>Laryngomalacia</td>
<td>Mild</td>
<td>Oral</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recurrent pneumonia</td>
<td>Supraglottoplasty (10 days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>Epilepsy syndrome</td>
<td></td>
<td></td>
<td></td>
<td>Tracheostomy</td>
<td>Severe</td>
<td>Oral + NET</td>
<td>Yes</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Midnasal stenosis</td>
<td>Mild</td>
<td>Oral NET</td>
<td>No</td>
</tr>
<tr>
<td>24</td>
<td>29</td>
<td>Inflammatory bowel disease</td>
<td>GERD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral NET</td>
<td>Yes</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>Neonatal convulsive syndrome</td>
<td>Under investigation</td>
<td></td>
<td>Malnutrition</td>
<td></td>
<td></td>
<td>Oral</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GERD</td>
<td></td>
<td>Necrotizing enterocolitis (neonatal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impaired weight gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GI, gastrointestinal; GERD, Gastroesophageal reflux disease; UGIB, Upper Gastrointestinal Bleeding; NET, Nasoenteric tube; GT, Gastrostomy tube.
neurological disorders (86.8%) and 67.9% had a history of recurrent pneumonia in a 1 year period. Recurrent pneumonia was positively correlated with laryngeal penetration and aspiration. Hirsch et al. reported higher morbidity and mortality in children hospitalized with aspiration pneumonia than those with community-acquired pneumonia. The group with aspiration pneumonia was more likely to have associated chronic conditions (including dysphagia and neurological disease as risk factors), had longer and more expensive hospitalizations (mean cost was 2.4 times higher), higher ICU admission, and 30-day readmission rates.

Managing chronic aspiration in children requires considering the etiology, comorbidities, aspirated material characteristics (including aspiration of refluxed material), airway clearance capacity, and established pulmonary sequelae. Based on these factors, a more conservative or aggressive approach may be taken. One of the main goals in managing aerodigestive patients is to provide a safe and efficient feeding route and this justifies the reason for changes in cases of moderate and severe dysphagia, whether with consistency adjustments or oral intake restriction with gastrostomy indication. It is recommended to implement these changes in conjunction with rehabilitative therapy and regular reassessments by the team. Despite the apparent advantage of performing exams and procedures quickly to define strategic therapeutic measures as has been describing by Boesch et al., initial evaluation and rehabilitative therapy may help tailor the need for specific exams on a case-to-case basis.

Aerodigestive patients present multiple comorbidities and can present a high prevalence of neurological impairment as showed in present study group (56%) and is also reported by Kim et al in 85% of patients. Neurologically impaired children should undergo both clinical and instrumental dysphagia assessments since clinical swallowing assessments are not sensitive enough to diagnose aspiration consistently, especially in high-risk populations.

Instrumental swallowing tests (FESS and VFSS) are essential to assess oral feeding safety and document aspiration disease. FESS has the advantage of not submitting the patient to radiation meaning it can easily be repeated and evaluates both laryngopharyngeal anatomy and function. FESS is widely available in the present institution and was the chosen method. VFSS was demanded in some cases after FESS and the team chose the ideal moment for it considering that the patient would be submitted to radiation. VFSS is

<table>
<thead>
<tr>
<th>Distribution of patients according to clinical characteristics</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swallowing assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal swallowing</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Mild dysphagia</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Moderate dysphagia</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Severe dysphagia</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Proposed change in feeding route</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>17</td>
<td>68</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Neurological impairment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>Gastrointestinal disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>36</td>
</tr>
</tbody>
</table>

Descriptive analysis. n, absolute frequency; %, relative frequency.

Figure 1 Summary of clinical characteristics of patients.

Descriptive analysis. n, absolute frequency; %, relative frequency.

<table>
<thead>
<tr>
<th>Exam or surgery</th>
<th>Performed/ requested (%)</th>
<th>Time lapse (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microlaryngoscopy and bronchoscopy</td>
<td>2/6 (33.3%)</td>
<td>42</td>
</tr>
<tr>
<td>Gastrointestinal endoscopy</td>
<td>5/6 (83.3%)</td>
<td>206.4</td>
</tr>
<tr>
<td>Gastroscopy</td>
<td>7/10 (70%)</td>
<td>315.2</td>
</tr>
<tr>
<td>Lung computed tomography scan</td>
<td>3/7 (42.8%)</td>
<td>197.3</td>
</tr>
<tr>
<td>Videofluoroscopic Swallowing Study</td>
<td>0/3 (0%)</td>
<td></td>
</tr>
<tr>
<td>Phimetry</td>
<td>7/11 (63.6%)</td>
<td>46.5</td>
</tr>
</tbody>
</table>

Table 2 Number of exams and surgeries requested, percentage of those performed and time lapse to perform them.
unavailable in most public hospitals in the region and has a
high cost for the family if performed in private clinics, which
justifies its low-performance rate found in the study.

Since VFSS was already an established method when FEES
was introduced, the two procedures are frequently com-
pared\(^2\) although most of them are reported adults with good
correlation. In children, there are very few studies. The high
agreement has been reported for spillage, residue, penetra-
tion, and aspiration.\(^{24,25}\) In a study of bottle-fed infants in the
NICU, FEES detected more instances of penetration than VFSS
and agreement was high for aspiration (92%).\(^{26}\) According to
Pavithran et al., FEES has a high specificity in detecting aspira-
tion (82%), but a negative FEES result for aspiration should be
considered in the context of aspiration risk and other endo-
scopic factors if VFSS is not possible.\(^{27}\)

Long waiting periods for exams and procedures were
observed in this patient group due to the national health sys-
tem’s overload. In this scenario, hospital admissions for
acute illnesses may provide an opportunity to identify
patients at risk of aspiration and malnutrition and perform
necessary exams and procedures. One cannot underestimate
the value of an appropriate routine to identify patients
admitted for recurrent acute airway episodes, apneic spells,
and/or issues related to feeding and swallowing. This was
observed in the current study: with the reduction of the out-
patient clinics seen in 2020 during the Covid pandemic,
younger patients were evaluated from the pediatric ward
(6.5 months old compared to 40 months in 2019).

Procedures that depend on the availability of operating
room hours and hospital beds for elective hospitalization,
such as gastrostomy and MLB, were another obstacle and
goes against what is advocated in the consensus of pediatric
aerodigestive programs.\(^8\) The center is a general public uni-
versity quaternary hospital, attending 86 cities and a popu-
lation of approximately 6 million people). Critically ill
patients are transferred from low complexity centers contin-
uously and tend to “compete” with elective outpatients for
the available hours in surgical schedules.

Although aerodigestive centers in the USA constantly
speak of the importance of “triple endoscopies”,\(^7\) this is a
very difficult practice in the hospital. Since there are no des-
ignated time slots specifically for the aerodigestive team for
procedures under general anesthesia and different special-
ties work on different days in the hospital. On the other
hand, triple endoscopies may not be as extensively indicated
in the aerodigestive patient as suggested by the American
consensus and specific criteria may need to be defined to
reach a more palatable model for developing countries.

Limitations of this study include the lack of instruments to
assess the impact on quality of life and the long-term clinical
and economic benefits of this model in the studied country,
which is a challenge for aerodigestive groups worldwide. The
 interruption of care during the covid-19 pandemic may have
introduced considerable bias as patients seen in 2020 under-
went procedures more quickly, taking advantage of hospitaliza-
tion and larger availability of surgical slots since elective
surgeries were suspended. Despite the small sample, the find-
ings may guide groups outside the US with similar challenges to
guarantee the best care for complex children.

Since 2019 some institutional advances have occurred
and currently, an aerodigestive clinic has been set up, where
children receive in-person care from a multidisciplinary

team who collaborate in real-time. The clinic remains to be
recognized by the present institution as a “unit” per se with
the designated time slots in the operating theatre and for
specific exams. Continuous research is needed to determine
the long-term effects of this model, although the improve-
ment in caregivers’ feedback regarding the team’s work is
very noticeable.

Strategies to improve the quality of care to these patients
include institutional recognition of the aerodigestive program
with scheduled time slots dedicated to these patients in the
operating theatre and designated funding to ensure quotas for
imaging. The hiring of a coordinator may optimize communica-
tion with the family and flow of patients, and telemedicine
can help the systematic feedback from the aerodigestive team
to primary and secondary healthcare units responsible for
the rehabilitation therapies. Ultimately, it is imperative that
pediatricians attending the pediatric ward and outpatient clin-
icists appreciate the role of the aerodigestive team and identify
patients that fill the criteria for referral, particularly those
with suspected aspiration.

The current case series found dysphagia to be the most
common disorder in this initial aerodigestive group confirm-
ing the need for systematic instrumental assessment of swal-
lowing in aerodigestive patients. Recognition of the role of
the aerodigestive team and identification of patients that
fill the criteria for referral, particularly those with sus-
pected aspiration, is imperative.

Authors’ contributions

All authors contributed to the conception of the study, inter-
pretation of data, drafting the article, and final approval of
the submitted version. Débora B. Pazinatto and Flávia L. P.
Costa contributed also to acquisition of data.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Piccione J, Boesch RP. The multidisciplinary approach to pedi-
atric aerodigestive disorders. Curr Probl Pediatr Adolesc Health
Care. 2018;48:66–70.

Size and prevalence of pediatric aerodigestive programs in

3. Collaco JM, Aherrera AD, Au Yeung KJ, Lefton-Greif MA, Hoch J,
Skinner ML. Interdisciplinary pediatric aerodigestive care and
reduction in health care costs and burden. JAMA Otolaryngol

4. Rotsides JM, Krakovsky GM, Pillai DK, Sehgal S, Collins ME,
Noelke CE, et al. Is a multidisciplinary aerodigestive clinic more
effective at treating recalcitrant aerodigestive complaints than

5. Boesch RP, Balakrishnan K, Acra S, Benscoter DT, Cofer SA, Col-
laco JM, et al. Structure and functions of pediatric aerodiges-
tive programs: a consensus statement. Pediatrics. 2018;141:
e20171701.

