Jornal de Pediatria xxxx;xxx(xxx): xxx-xxx Formal de Pediatria De La Companya d www.jped.com.br **ORIGINAL ARTICLE** # Analysis of complications related to diabetic ketoacidosis in pediatric patients at a University Hospital: a cross-sectional study 📭 Caroline Quilice Naccarato 🗅 *, Nathalia Azevedo 🕩 , Raphael Del Roio Liberatore Jr 🕩 Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Pediatria - Endocrinologia Pediátrica, Ribeirão Preto, São Paulo, Brazil Received 9 September 2024; accepted 17 January 2025 Available online xxx ## **KEYWORDS** Pediatrics; Diabetic ketoacidosis; Type 1 diabetes mellitus #### Abstract Objectives: Diabetic ketoacidosis is one of the main complications of type 1 diabetes mellitus and the leading cause of death among children and adolescents with the disease. The objective of this study was to characterize the cases of diabetic ketoacidosis treated in a University Hospital reference in pediatric endocrinology and identify their most frequent complications. *Methods*: A cross-sectional descriptive study was carried out, based on the review of medical records of patients aged 0–16 years with a diagnosis of diabetic ketoacidosis treated between January 2016 and August 2020. Insulin therapy was performed subcutaneously as part of the hospital's protocol. Results: Seventy-seven (77) admissions were analyzed and 55.8% were diagnosed with a new case of type 1 diabetes. Adolescents (54.5%) were the most affected. An increase of 90.9% of cases between 2016 and 2020 was visualized. Severe DKA was more frequent in school-aged children. An increase in the dose of insulin was related to the severity of diabetic ketoacidosis. Hypokalemia was the most frequent complication. Cerebral edema occurred in 11.7% of cases, and it was the cause of the only death, corresponding to a mortality rate of 1.3%. Conclusions: Rising DKA incidence aligns with global trends, with poor adherence driving cases in previously diagnosed adolescents. High rates of hypokalemia and cerebral edema were found, but with lower mortality, showing the effectiveness of subcutaneous insulin for treatment. Future studies should confirm findings, address adherence issues, and refine hydration, insulin dosing, and monitoring practices to reduce complications. © 2025 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). E-mail: carol.naccarato@hotmail.com (C.Q. Naccarato). https://doi.org/10.1016/j.jped.2025.01.009 0021-7557/© 2025 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Please cite this article in press as: C.Q. Naccarato, N. Azevedo and R.D. Liberatore, Analysis of complications related to diabetic ketoacidosis in pediatric patients at a University Hospital: a cross-sectional study, Jornal de Pediatria (2025), https://doi.org/10.1016/j.jped.2025.01.009 ^{*} Corresponding author. # Introduction 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 45 46 47 48 49 50 51 52 53 54 55 56 Type 1 diabetes mellitus (T1DM) is one of the most prevalent chronic diseases in the pediatric population, 1 characterized by autoimmune destruction of pancreatic beta cells, leading to total insulin deficiency. In 2021, Brazil was in third place in the world ranking of new cases of T1DM among individuals aged 0-19 years old. The incidence and prevalence have been increasing globally, due to rising disease cases and decreasing mortality. Diabetic ketoacidosis (DKA) is a serious and potentially life-threatening complication of T1DM and may be the first manifestation of the disease.^{3,4} It remains the main cause of death among children and adolescents with type 1 diabetes. 2-4 The highest mortality is related to the occurrence of cerebral edema. 1,5,6 The Clinical Hospital of the Ribeirão Preto Medical School (HC-FMRP), where the study was carried out, is a tertiary care center for pediatric endocrinology and pediatric emergencies in the XIII Regional Health Division of the state of São Paulo, comprising 26 cities. It is responsible for the treatment of DKA cases in the public health system. This study aimed to characterize the epidemiological and clinical features of pediatric DKA, evaluate its complications and morbidity, and evaluate the effectiveness of the treatment at the institution. #### Materials and methods This is a cross-sectional descriptive study, based on the review of medical records from the Clinical Hospital of the Ribeirão Preto Medical School. The patient list was obtained from the Institution's Medical Archive Service, by searching for hospitalizations with diabetic ketoacidosis codes from ICD-10). Patients with multiple occurrences of DKA were included more than once. The sample included pediatric patients (0 to 16 years old, which is the cutoff age for the pediatrics in this hospital) with DKA treated between January 2016 and August 2020. Charts from patients not meeting diagnostic criteria were excluded. The project was approved by the Ethics and Research Committee of the HC-FMRP, by protocol number 5,832,639. # Protocol for diagnosis and treatment of DKA in this service The treatment of children and adolescents with DKA takes place in the Emergency Unit, a hospital designated for urgent and emergency cases. All children up to the age of 16 are treated by the pediatrics department, according to the institution's protocol. Patients older than this age are referred to the adult medical team. The pediatrics department follows its own DKA treatment protocol, which is unpublished and was developed by the leading emergency doctors of the sector. In this protocol, DKA is defined as blood glucose above 200 mg/dl; venous serum pH below 7.3 and/or serum bicarbonate below 15 mmol/L; and presence of ketonemia and ketonuria. DKA is classified as mild (pH between 7.3 and 7.2 or bicarbonate between 15 and 10 mEg/L), moderate (pH < 7.2 or bicarbonate between 5 and 10 mEg/L), and severe (pH < 7.1 or bicarbonate < 5 mEg/L). 59 60 61 67 68 75 77 79 80 81 82 85 86 98 99 103 104 105 106 107 109 110 111 Rehydration is made by intravenous 0.9% saline solution. The degree of dehydration is clinically estimated between 6 and 8 % of body weight. Regular insulin administration starts 63 after the first hour of hydration, using subcutaneous insulin therapy at a dose of 0.1 U/kg. The same dosage is administered every hour until the resolution of DKA (bicarbonate 66 greater than or equal to 15 mEg/L and pH greater than or equal to 7.3). The diet is started after DKA is resolved. Potassium chloride is added to the IV fluids when its 69 serum level is below 6 mEg/L, with potassium infusion being 70 0.2 to 0.5 mEq/kg/h, according to the corrected potassium 71 value. Insulin therapy is not indicated in patients with potassium levels of <3.0, requiring its replacement in higher 73 doses (0.4 to 0.5 mEq/kg/h), and insulin started only after 74 this correction. The aim was to maintain blood glucose between 150 and 76 200 mg/dL, so when lower values, glucose was added to the IV fluids, or half the insulin dose (0.05 U/kg) could be given at certain times. Sodium bicarbonate is used only when pH values below 7 are found. DKA cases were managed in the pediatric emergency room. Patients who need neurological monitoring (suspected or confirmed cerebral edema), ventilatory support, and difficult-to-control electrolyte disorders were admitted to 84 Intensive Care Units. ### **Evaluated data** In reviewing the medical records, the following aspects were 87 analyzed: gender, age, type of diabetes mellitus (1 or 2), time since diagnosis (onset T1DM or previous diagnosis), treatment before admission to the HC-FMRP, initial tests (pH, bicarbonate (HCO3), blood glucose, sodium, potassium and phosphorus), time for recovery from DKA, the volume of infused solution and insulin used until recovery from acidosis, use of bicarbonate, the occurrence of complications 94 (hypokalemia, hypoglycemia, hypophosphatemia, cerebral 95 edema and death), and hospitalization in Intensive Care 96 Units. The data were schematized in tables and figures, and 97 it was calculated means, standard deviation, and frequencies using Microsoft Office Excel and the R program. **Results** 100 The final sample was 77 patients. Regarding the number of 101 cases of DKA per year, the total was 11 in 2016, 13 in 2017, 12 in 2018, 20 in 2019, and 21 until August 2020, with an average of 15.4 cases per year, with an increase of 90.9% between the first and last year of the study. In those patients, a similar distribution was observed between genders (50.6% in males, 49.4% in females). Among the evaluated cases, 55.8% were diagnosed with a new case of T1DM. The most affected age group was adolescents (54.5%). Detailed data can be seen in Table 1. Figure 1 shows the frequency of cases analyzed by age and DKA severity. Regarding severity, it was classified as moderate in 37.7% (p = 0.468) of the total, followed by severe cases in 35.1% 113 Table 1 General characteristics of the sample. | | | Total | % | |------------------------------------------------------|----------------------------------|-------|--------| | Gender | Male | 39 | 50.6 % | | | Female | 38 | 49.4% | | Severity | Mild | 21 | 27.3 % | | | Moderate | 29 | 37.7 % | | | Severe | 27 | 35 % | | Diagnosis time | Onset | 43 | 55.8% | | | Previous diagnosis | 34 | 44.2 % | | Age group | Infant $(0-2 \text{ years old})$ | 7 | 9 % | | | Preschooler (2-4 years) | 5 | 6.5 % | | | School age (5-10 years old) | 23 | 29.9% | | | Adolescents (11–16 years old) | 42 | 54.5 % | | Type of DM ^a | DM 1 | 75 | 97.4% | | | DM 2 | 2 | 2.6% | | Did they receive treatment prior to hospitalization? | Yes | 42 | 54.6% | | | No | 35 | 45.4% | ^a Diabetes mellitus. 114 116 117 118 119 120 121 122 123 124 125 (p = 0.809) and mild in 27.3 % (p = 0.279). There was no statistically significant difference between the observed proportions for each severity level analyzed individually. Comparing patients with DKA due to new-onset diabetes (43 cases) to those with a previous diagnosis (34 cases), the gender distribution was equal in both groups. The predominant age group in the new-onset diabetes cases was schoolaged children (40%), whereas adolescents accounted for the majority (79%) in the previously diagnosed group. The severity of DKA was classified as severe in most cases in the new-onset group (44%) and moderate in the decompensation group (41%). Both groups exhibited high rates of complications, at 80% and 70%, respectively. In the newonset group, one case (2%) required ICU admission, compared to six cases (18%) in the previously diagnosed group. In the sample, seven patients (9.1%) were admitted to the Intensive Care Units (UCI), with 1 being moderate (3.4% 130 of moderate DKA) and 6 severe (22.2% of severe DKA). 131 Within this group, 2 required an advanced airway. Regarding the moderate case, the patient's medical records did not provide justification for the ICU admission. It was a 15-year-old male patient who reported discontinuing insulin use as a suicide attempt. The entire management of the DKA was conducted in the ICU, despite the absence of cerebral 137 Figure 1 Frequency of mild, moderate, and severe cases by age range. Conduction of treatment. Table 2 | | Mean recovery time (h ^a) | Mean volume infused (ml/kg) | Mean amount of insulin (IU/kg) | |-----------------|--------------------------------------|-----------------------------|--------------------------------| | Mild | 5.9 | 44.2 | 0.36 | | Moderate | 8.7 | 70.4 | 0.61 | | Severe | 21.9 | 116.2 | 1.07 | | Mean | 12.6 | 78.7 | 0.70 | | SD ^b | 16.1 | 42.7 | 0.51 | ^a Hour. 140 141 142 143 144 145 146 147 148 149 150 151 152 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 edema, need for ventilatory support, or difficult-to-control electrolyte disturbances. Only one of the patients admitted to the ICU was a case of new-onset diabetes, while the others were already known to have the disease. Three patients were female (43%) and four were male (57%). Two patients were 9 and 10 years old, while the others were adolescents, aged 12 to 15 years. The precipitating factors for DKA cases were an infectious condition in 39 % of the cases (with a predominance of respiratory infections in 69%), poor adherence to treatment in previously diabetic patients in 21% of the cases, and no acute cause identified in 40%. Among patients who already had a diagnosis of diabetes, failure to use insulin was the cause in 47 % of cases of DKA. The average time between the onset of symptoms and the diagnosis of DKA was 11.8 (\pm 16.4) days. The mean for DKA recovery time was 12.6 (\pm 16.1) hours, and the mean volume of infused solution was 78.7 (\pm 42.7) ml/kg. An increase in the insulin dosage and in the time to recovery was observed according to the greater severity of the cases, as shown in Table 2. The use of bicarbonate was identified in 53.8% of severe cases and 27.6% of moderate cases, and it was not used for mild cases. It was investigated the following complications: hypokalemia, hypoglycemia, cerebral edema, and death. The proportion of occurrence of each one of them, considering the total sample, and the proportion according to severity, can be seen in Table 3. Hypokalemia was the most frequent complication during treatment, occurring in 54.5% of cases, and occurring in 81.5% of severe DKA. Hypoglycemia (values below 70 mg/ dL) occurred in 20.8% of cases, with a similar distribution according to severity. Regarding hypophosphatemia, inorganic phosphorus levels were found in only 33.8% of admissions. Within this percentage, there were 21 cases of hypophosphatemia (80.8%). The occurrence of cerebral edema (all confirmed by head 175 computed tomography) was found in 11.7% of the total 176 (9 patients), being more frequent in severe cases. It was found that 40.2 % of children had neurological symptoms during DKA 178 correction, and of these, 29 % received confirmation of edema by imaging. The symptoms of cerebral edema presented were drowsiness (100% of cases), alteration in the Glasgow Coma Scale (88.9 % of cases), headache (44.5 %), hyporesponsiveness (44.5%), dizziness (11%), and agitation (11%). 181 182 183 184 185 186 187 203 204 205 206 Cerebral edema was the cause of the only death, corresponding to an overall DKA mortality of 1.3%. Considering mortality only among cases of edema, this corresponds to 11.1%. **Discussion** 188 Over the study period, the authors observed a significant 189 increase in DKA cases, with nearly double the number of cases reported in 2020 compared to 2016, especially considering that the cases analyzed in 2020 are only up to August. This trend aligns with global studies indicating rising DKA incidence, such as reports from Germany, China, Chile, and Croatia. 8-11 Potential factors contributing to this increase 195 include delayed diagnosis, limited public awareness of T1DM 196 symptoms, and healthcare access challenges exacerbated 197 by systemic inequalities. 12 Among the cohort, 55.8% of DKA cases occurred in newly 199 diagnosed T1DM patients, consistent with other Brazilian studies reporting rates between 41% and 59.6%. 13-15 Data from the world literature show a wider variation: it ranges from 32 % to 67,4 %. 9,11,16-18 Such variability is related to the incidence of type 1 diabetes in each region and public health initiatives for population education for early recognition of disease symptoms. 10 Regarding the age group (Table 1), the authors identified 207 most cases in adolescents (11-16 years, 54.5%), mostly 208 Table 3 Occurrence of complications according to the severity of the symptoms. | Severity of the | Hypokalemia | | Hypoglycemia | | Cerebral edema | | Death | | |--------------------|-------------|--------|--------------|--------|----------------|-------|-------------|-------| | DKA ^a : | Occurrences | % | Occurrences | % | Occurrences | % | Occurrences | % | | Mild | 7 | 33.3 % | 4 | 19.1% | 0 | 0 | 0 | 0 | | Moderate | 13 | 44.8% | 6 | 20.7 % | 2 | 6.9% | 0 | 0 | | Severe | 22 | 81.5% | 6 | 22.2% | 7 | 25.9% | 1 | 3.7 % | | Total | 42 | 54.5 % | 16 | 20.8% | 9 | 11.7% | 1 | 1.3 % | ^a DKA, diabetic ketoacidosis. Standard deviation. with mild symptoms, like studies in Paraguay (57.9% in adolescents). A greater number of cases of DKA was also found in adolescents who already had a diagnosis of type 1 diabetes in a Chilean study, associated with poor adherence to treatment¹¹; in Venezuela, cases in previously diabetic patients were also higher in the 10-19 age group. 16 This contrasts with severe DKA being more prevalent among school-aged children (Figure 1), likely due to delays in diagnosis related to nonspecific symptoms. 211 212 213 214 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 238 239 240 241 242 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 In this series, 64% of the cases of adolescents already had a diagnosis of type 1 diabetes. From this number, 49% presented a lack of adequate use of insulin as the cause of DKA, even with clinical follow-up in specific outpatient clinics and free medication for treatment. Among the other age groups with a previous diagnosis of diabetes, only 16% of DKA were due to poor adherence to therapy. The present findings indicate that recovery times for DKA in the studied institution (mean 12.6 h) exceed those reported by the International Society for Pediatric and Adolescent Diabetes (ISPAD) (mean 11.6 h), ¹⁹ especially in more severe cases (Table 2). In other Brazilian series, the authors found an average for recovery ranging from 11 to 27 h, 14,15 with a difference in the time for DKA resolution considering the normalization of pH and bicarbonate individually, with an average of 18 h for the first and 21 h for the second. 15 countries, it takes about 14 to 29 h to correct DKA. 10,20,21 This discrepancy may reflect differences in treatment criteria. The protocol requires both pH > 7.3 and bicarbonate > 15 mEq/L to define resolution, while others take into account only one or the other. 3,10,22 Prolonged treatment time is directly associated with the use of larger volumes of hydration and insulin, which can lead to the appearance of complications such as hypoglycemia and hypokalemia. In comparison with a study in Campinas (São Paulo, Brazil) in which the total volume used for the treatment of severe cases was on average 82.7 ml/kg in moderate cases and 71.4 ml/kg in mild cases, 15 in this service the total volume needed was lower in mild and moderate cases (44.1 and 70.4 respectively), and higher in severe cases (116.2 ml/kg). Regarding the use of insulin, there was a greater need for insulin therapy, the greater the severity of the case. This finding is similar to the study carried out in Campinas, in which the time of insulin administration was directly proportional to the severity of the cases. 15 However, the institutional protocol makes use of subcutaneous regular insulin every hour for the treatment of DKA, unlike other evaluated studies. 14,15,23 As for the use of sodium bicarbonate, its use is not routinely recommended. 3,18,23,24 Studies have not shown benefit from the administration of bicarbonate, with its use being suggested only in cases of severe acidosis (pH < 6.9) associated with cardiac alteration or life-threatening hyperkalemia.3 Its use was carried out in 0.04% of hospitalizations in Campinas, all of which were severe cases of patients in the Intensive Care Units who did not respond to the initial treatment. 15 In the study carried out in Paraguay, it was used in 5% of the cases.²⁰ In this work, higher use was identified in moderate and severe cases refractory to initial treatment. Regarding complications, hypokalemia was the most frequent complication (Table 3). In other study from Brazil, 34.6% of the patients had hypokalemia. 14 In worldwide data, the frequency of hypokalemia ranged from 22 % to 271 67.1%. 11,25-28 Research suggests that the use of lower doses of insulin leads to a lower risk of developing hypokalemia.²⁸ Hypoglycemia was the second most common complication 274 found in this work, occurring in 20.8 % of cases. In other Brazilian studies, the rate was lower, ranging from 13.1% to 15%. 14,15 The authors must consider that the difference in the frequency of hypoglycemia between the services may be due to the use of different cuts for its definition; in this protocol, it is defined as values below 70 mg/dL. Studies show the occurrence of hypoglycemia in about 25 % of DKA treatments using high doses of insulin and indicate that this fre- 282 quency could decrease with continuous insulin infusion at 283 lower doses.²⁶ Hypophosphatemia is a disorder little researched in the service, and that may be underdiagnosed. However, there is no clinical proof of benefit in the treatment with its replacement.³ 284 288 289 290 301 304 305 320 324 325 326 327 In the present data, the authors found an ICU admission rate of 9.1% among all cases and an admission rate of 22% when considering only severe cases. ISPAD recommends ICU admission for all severe DKA cases or those at high risk for cerebral edema. However, there is limited published data on ICU admission rates for children during DKA treatment. A recent publication by an Italian group reported a total ICU admission rate of 10% in severe DKA cases.²⁹ Meanwhile, another recent monocentric study from Croatia showed bigger rates. 10 Discrepancies in DKA-related hospitalization rates may be influenced by unequal access to PICU resources across regions or by differences in the proficiency of DKA management in non-intensive pediatric care units. The occurrence of cerebral edema reported by ISPAD ranges from 0.5 to 0.9 %.3 In this study, the authors found a rate of 11.7%, which is considered high. In other recent publications in Brazil, the frequency of cerebral edema ranged from 1.24% to 5.7%. 13-15 In other countries, it ranged between 1.2 % and 13.2 %. 10,21,25 According to ISPAD, the number of deaths due to DKA in children ranges from < 1 % in developed countries to 3-13 % in developing countries, and from 21 % to 24 % among those with cerebral edema. In this research, among all patients, 310 the authors found a death rate of 1.3%, which was higher 311 than reported by current guidelines. Regarding mortality 312 among cases with cerebral edema, the rate found was 11%, lower than that reported by ISPAD. In other Brazilian studies, it ranged from 0.62% to 2% of the total of patients. 13-15 In 315 Campinas, it corresponded to 100 % among cases with cerebral 316 edema. 15 In other countries, the frequency of deaths ranged 317 between 0.6% and 13.2% of the total patients, and, from this total, 15 % – 33.5 % occurred due to cerebral edema. 10,21,26 The objective of this study was to characterize the pediatric population with DKA at HC-FMRP and its complications. Increasing DKA incidence rates were observed, consistent with other studies in Brazil and worldwide. Adolescents, many with previously diagnosed diabetes, were the most affected, highlighting adherence difficulties. Cerebral edema rates were higher than expected, but mortality was lower, emphasizing the need for preventive measures. Further studies are necessary to explore the 2020 DKA increase and confirm its continuity. Complication data from this study can guide improvements in protocols, focusing on reducing hypoglycemia and hypokalemia. Notably, the low mortality rate among cerebral edema cases suggests 332 subcutaneous insulin is a viable alternative where intravenous pumps are unavailable. The study's limitations include retrospective analysis of non-standardized medical records, which complicates data collection. Additionally, patients often receive external treatment that lacks detailed records, affecting the assessment of pre-hospitalization therapeutic measures. While the study's sample size of 77 patients may be low, the HC-FMRP serves as a regional reference for pediatric endocrinology. enabling the collection of numerous cases and allowing for protocol evaluation with other global guidelines. Despite these challenges, the study's findings provide critical insights into local DKA management and allow actionable improvements in treatment protocols, including optimizing hydration strategies, insulin dosing, and complication monitoring. #### **Funding** 348 334 335 336 337 338 339 341 342 343 344 345 This research did not receive any specific grant from funding 349 agencies in the public, commercial, or not-for-profit sectors. # **Conflicts of interest** The authors declare no conflicts of interest. ### **Editor** 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 C. de A.D Alves #### References 355 - 1. Magliano D, Boyko EJ. IDF Diabetes Atlas. 10th edition. Brussels: 356 357 International Diabetes Federation; 2021. - 358 2. Vencio SC. Diretrizes Da Sociedade Brasileira De Diabetes 2019-2020. Editora Clannad; 2019. 03 - 3. Glaser N, Fritsch M, Priyambada L, Rewers A, Cherubini V, Estrada S, et al. ISPAD Clinical Practice Consensus Guidelines 2022: diabetic ketoacidosis and hyperglycemic hyperosmolar state. Pediatr Diabetes. 2022;23:835-56. - 4. Negrato CA, Cobas RA, Gomes MB. Brazilian Type 1 Diabetes Study Group. Temporal changes in the diagnosis of type 1 diabetes by diabetic ketoacidosis in Brazil: a nationwide survey. Diabet Med. 2012;29:1142-7. - 5. Carlotti AP, Carmona F, Cetoacidose diabética, Rotinas Em Terapia Intensiva Pediátrica. São Paulo: Blucher; 2015;1:141-9. - Castellanos L, Tuffaha M, Koren D, Levitsky LL. Management of diabetic ketoacidosis in children and adolescents with type 1 diabetes mellitus. Pediatr Drugs. 2020;22:357-67. - 7. Wells RH, Bay-Nielsen H, Braun R. CID-10: Classificação Estatística Internacional De Doenças e Problemas Relacionados à Saude (2011). São Paulo: EDUSP; 2011, Vol. 3v. - Ziegler R, Neu A. Diabetes in childhood and adolescence. Dtsch 376 Ärztebl Int. 2018;115:146-56. 377 - 9. Peng W, Yuan J, Chiavaroli V, Dong G, Huang K, Wu W, et al. 10-378 379 year incidence of diabetic ketoacidosis at type 1 diabetes diag-380 nosis in children aged. 16 years from a large regional center (Hangzhou, China). Front Endocrinol. 2021;12:653519. 381 - 382 Lah Tomulić K, Matko L, Verbić A, Milardović A, Severinski S, 383 Kolić I, et al. Epidemiologic characteristics of children with dia-384 betic ketoacidosis treated in a pediatric intensive care unit in a 10-year-period: single centre experience in Croatia. Medicina (Mex). 2022;58:638. 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 **Q**04B 404 405 406 407 408 409 410 411 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 - 11. Del Pozo P, Aránguiz D, Córdova G, Scheu C, Valle P, Cerda J, et al. Perfil clínico de niños con cetoacidosis diabética en una Unidad de Paciente Crítico. Rev Chil Pediatría. 2018;89:491-8. - 12. Zucchini S, Bonfanti R, Schiaffini R, Passanisi S, Salzano G, Lombardo F. Editorial: diabetic ketoacidosis in children and adolescents: from epidemiological data to clinical aspects. Front Pediatr. 2023;11:1164946. - 13. Souza LC, Kraemer GD, Koliski A, Carreiro JE, Cat MN, Lacerda LD, et al. Diabetic ketoacidosis as the initial presentation of type 1 diabetes in children and adolescents: epidemiological study in southern Brazil. Rev Paul Pediatr. 2020;38:e2018204. - 14. Lopes CL, Pinheiro PP, Barberena LS, Eckert GU. Diabetic ketoacidosis in a pediatric intensive care unit. J Pediatr (Rio J). 2017; 93:179-84. - 15. Castro L, Morcillo AM, Guerra-Junior PD. Diabetic ketoacidosis in children: treatment profile at a university hospita. Rev Assoc Med Bras. 2009;54:548-53. - 16. Villarreal Y, Briceño Y, Paoli M. Diabetes mellitus tipo 1: características clínicas y demográficas en pacientes del servicio de endocrinología del instituto autónomo hospital universitario de los andes, mérida, venezuela. Rev Venez Endoc. 2015;13:33-47. - 17. Alonso GT, Coakley A, Pyle L, Manseau K, Thomas S, Rewers A. Diabetic ketoacidosis at diagnosis of type 1 diabetes in Colorado children, 2010-2017. Diabetes Care. 2020;43:117-21. - 18. Lapolla A, Amaro F, Bruttomesso D, Di Bartolo P, Grassi G, Maffeis C, et al. Diabetic ketoacidosis: a consensus statement of 412 the Italian Association of Medical Diabetologists (AMD), Italian 413 Society of Diabetology (SID), Italian Society of Endocrinology and Pediatric Diabetoloy (SIEDP). Nutr Metab Cardiovasc Dis. 2020:30:1633-44. - 19. Wolfsdorf JI, Glaser N, Agus M, Fritsch M, Hanas R, Rewers A, et al. ISPAD Clinical Practice Consensus Guidelines 2018: diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr Diabetes. 2018;19:155-77. - 20. Alviso López RD, Blanco Espínola CF. Evolución clínico-laboratorial de la cetoacidosis diabética en pacientes con diagnósticos de diabetes tipo I, ingresados a la Urgencia Pediátrica del Hospital de Clínicas. Pediatría Asunción. 2015;42:198-204. - 21. Bui TP, Werther GA, Cameron FJ. Trends in diabetic ketoacidosis in childhood and adolescence: a 15-yr experience: DKA admissions: trends over 15 yr. Pediatr Diabetes. 2002;3:82-8. - 22. Jiménez Fadul AM, Cortés Millán JC. Enfoque diagnóstico y terapéutico de la cetoacidosis diabética en niños y adolescentes en el servicio de urgencias. Jatreia. 2013:26:325-35. - 23. Cashen K, Petersen T. Diabetic ketoacidosis. Pediatr Rev. 2019; 40:412-20. - 24. Dhatariya KK, Glaser NS, Codner E, Umpierrez GE. Diabetic ketoacidosis. Nat Rev Dis Primer. 2020:6:40. - 25. González NC, Raga MG, Zaldívar DN, González LL. Cetoacidosis diabética en niños menores de 15 años. Rev Cub Med Gen Int. 2014;30:93-102. - 26. Jayashree M, Singhi S. Diabetic ketoacidosis predictors of outcome in a pediatric intensive care unit of a developing country. Pediatr Crit Care Med. 2004;5:427-33. - 27. Dhatariya KK, Nunney I, Higgins K, Sampson MJ, Iceton G. National survey of the management of diabetic ketoacidosis (DKA) in the UK in 2014. Diabet Med. 2016;33:252-60. - 28. Pasquel FJ, Tsegka K, Wang H, Cardona S, Galindo RJ, Fayfman M, et al. Clinical outcomes in patients with isolated or combined diabetic ketoacidosis and hyperosmolar hyperglycemic state: a retrospective, hospital-based cohort study. Diabetes Care. 2020;43:349-57. - 29. Passanisi S, Salzano G, Basile P, Bombaci B, Caime F, Rulli I, et al. Prevalence and clinical features of severe diabetic ketoacidosis treated in pediatric intensive care unit: a 5-year monocentric experience. Ital J Pediatr. 2023;49:58.