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Abstract

Objective: This study aimed to develop a predictive model using a random forest algorithm to

determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants

under 3 months with intestinal malrotation.

Methods: A machine learning model was used to predict postoperative adhesive small bowel

obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at

least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-

validation tuned and selected hyper-parameters for the random forest model. The model’s per-

formance was validated with 1000 bootstrap samples and assessed using receiver operating char-

acteristic (ROC) analysis, the area under the ROC curve (AUC), sensitivity, specificity, precision,

and F1 score.

Results: The random forest model demonstrated high diagnostic accuracy with an AUC of 0.960.

Significant predictors of ASBO included pre-operative white blood cell count (pre-WBC), mechani-

cal ventilation (MV) duration, surgery duration, and post-operative albumin levels (post-ALB). Par-

tial dependence plots showed non-linear relationships and threshold effects for these variables.

The model achieved high sensitivity (0.805) and specificity (0.952), along with excellent precision

(0.809) and a robust F1 score (0.799), indicating balanced recall and precision performance.

Conclusion: This study presents a machine learning model to accurately predict postoperative

ASBO in infants with intestinal malrotation. Demonstrating high accuracy and robustness, this

model shows great promise for enhancing clinical decision-making and patient outcomes in pediat-

ric surgery.
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1 Introduction

2 Intestinal malrotation is a congenital disorder characterized

3 by abnormal embryonic midgut development, resulting in

4 disrupted bowel rotation and fixation. This leads to anatomi-

5 cal abnormalities that increase the risk of complications

6 such as volvulus and obstruction. Approximately 1 in 500 live

7 births are affected by this condition,1-3 which is usually diag-

8 nosed during infancy or early childhood. The current stan-

9 dard treatment for intestinal malrotation is surgical

10 intervention, aiming to correct the anatomical abnormali-

11 ties and minimize the risk of complications. However, even

12 with advancements in surgical techniques and perioperative

13 care, some patients may develop postoperative complica-

14 tions, including adhesive small bowel obstruction (ASBO).

15 ASBO frequently occurs following abdominal surgery),4-6

16 such as that for intestinal malrotation. It is caused by fibrous

17 bands, known as adhesions, forming between abdominal

18 organs and tissues. These adhesions can lead to intestinal

19 obstruction through compression or torsion of the bowel,

20 producing symptoms like abdominal pain, distension, and

21 emesis. The incidence of ASBO post-surgery for intestinal

22 malrotation ranges from 8 % to 29 %.7-12

23 Diagnosing ASBO currently relies heavily on clinical judg-

24 ment and imaging techniques).13,14 However, these methods

25 have limitations in specificity and can be challenging due to

26 the subtle presenting symptoms in infants. Consequently,

27 there is growing interest in using machine learning algo-

28 rithms to enhance diagnostic accuracy and support decision-

29 making in the early identification of ASBO.

30 Machine learning models, which have become increas-

31 ingly popular in various fields, offer advantages over tradi-

32 tional statistical analysis methods. They can analyze

33 nonlinear relationships between data, proving beneficial in

34 disease diagnosis, subtype identification, and biomarker dis-

35 covery).15-17 Random forest is a machine learning algorithm

36 that uses an ensemble of decision trees to make predictions.

37 Each decision tree in the “forest” works independently, ana-

38 lyzing different parts of the data to classify outcomes or

39 make predictions. The final result is determined by combin-

40 ing the outputs of all the trees.

41 This study aims to apply a random forest algorithm to

42 develop a predictive model for early identification of ASBO in

43 infants under three months who have undergone surgery for

44 intestinal malrotation. By analyzing a range of clinical param-

45 eters, the goal is to establish a model that effectively pre-

46 dicts the likelihood of ASBO. This will aid in timely clinical

47 decision-making, optimize patient management, and ulti-

48 mately improve outcomes for this vulnerable patient group.

49 Material and methods

50 This study’s framework, depicted in Figure 1, includes three

51 main parts: data preparation, model building, and model

52 visualization and evaluation.

53Patient selection

54Patients treated at the Children’s Hospital of Chongqing

55Medical University from January 2012 to December 2020

56were enrolled in this study. All participants were diagnosed

57with intestinal malrotation and had undergone surgery. They

58were followed up for at least two years postoperatively,

59with categorization based on the occurrence of ASBO. The

60Ethics Committee of the Children’s Hospital of Chongqing

61Medical University approved this study (File No 57�2, 2022).

62Inclusion and exclusion criteria

63The study included patients aged under three months, defin-

64itively diagnosed with intestinal malrotation, and who had

65undergone Ladd’s procedure at the hospital. Exclusion crite-

66ria encompassed patients with incomplete clinical data,

67those who discontinued treatment or left the hospital volun-

68tarily, and those with less than two years of follow-up.

69Definition of ASBO

70Adhesive small bowel obstruction (ASBO) is characterized by

71symptoms such as vomiting, abdominal pain, and distension.

72Its diagnosis is confirmed by abdominal X-rays showing signif-

73icant intestinal loop dilation and air-fluid levels. ASBO com-

74monly results from fibrous adhesions in the small intestine,

75often occurring after abdominal surgeries.

76Predictor variables

77The present study carefully selected a wide range of factors

78for a comprehensive analysis that includes both clinical

79observations and laboratory data. Factors considered

80include the rotation angle observed during surgery, and

81demographic and physiological data like gender, age in days,

82mode of delivery, birth weight, and admission weight. Surgi-

83cal evaluation focused on the duration of the procedure,

84while postoperative care included mechanical ventilation

85duration (MV duration). Laboratory analysis, covering both

86preoperative and postoperative periods, involved parame-

87ters such as white blood cell count (WBC), neutrophil-to-

88lymphocyte ratio (NLR), red blood cell count (RBC), hemo-

89globin (HB), platelet count (PLT), C-reactive protein (CRP),

90total bilirubin (TBIL), and blood urea nitrogen (BUN), with

91postoperative values collected between 5 and 7 days after

92surgery. The liver function test enzyme index (LFTEI) was

93calculated from alanine aminotransferase (ALT) and aspar-

94tate aminotransferase (AST) levels and the time to start oral

95feeding (SOF) was recorded as an indicator of postoperative

96recovery.

97Feature selection

98In this study, the authors used the Boruta algorithm for fea-

99ture selection to identify significant predictors of ASBO in

100patients with intestinal malrotation. Designed for high-
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101 dimensional datasets, the Boruta algorithm creates shadow

102 features by generating random copies of the original fea-

103 tures. It then compares the importance of each real feature

104 to these shadow features using a random forest classifier.

105 Features less important than the most significant shadow

106 feature are iteratively removed, ensuring that only those

107 with statistically significant contributions to the model’s

108 predictive power are retained.

109Parameter tuning

110After feature selection, the authors utilized the random for-

111est algorithm for modeling, to optimize the random forest

112model, we applied a nested cross-validation approach com-

113bined with grid search. This approach addresses the chal-

114lenges posed by the limited sample size. Instead of

115partitioning the dataset into distinct training and testing

Figure 1 Architecture of the framework of this study.

ARTICLE IN PRESS
JID: JPED [mSP6P;January 4, 2025;9:38]

3

Jornal de Pediatria xxxx;xxx(xxx): xxx-xxx



116 sets, the authors implemented 4-fold cross-validation in

117 both the inner and outer loops of the nested procedure. This

118 approach provides a robust estimate of model performance

119 by evaluating various parameter combinations across differ-

120 ent data subsets.

121 In the inner loop, grid search systematically explored

122 parameter settings, with each configuration evaluated

123 through 4-fold cross-validation. The results were visualized

124 using heatmaps, facilitating the identification of optimal

125 parameter combinations based on performance metrics.

126 This method minimizes the risk of overfitting by ensuring the

127 selected parameters generalize effectively across the entire

128 dataset, thereby enhancing predictive performance.

129 Model visualization and evaluation

130 The authors employed feature importance metrics and par-

131 tial dependence plots to visualize and interpret the model.

132 Feature importance metrics identified variables significantly

133 influencing predictions, while partial dependence plots illus-

134 trated the effects of key features on the model’s output. To

135 further enhance interpretability, the authors visualized six

136 individual trees from the random forest model, providing

137 insights into the contributions of different trees to the final

138 predictions.

139 For model evaluation, the authors applied a bootstrap

140 method with 1000 replications, yielding reliable estimates

141 of accuracy, sensitivity, specificity, F1 score, and the area

142 under the ROC curve (AUC). The ROC curve analysis assessed

143 the model’s ability to discriminate between classes, serving

144 as a robust diagnostic tool. Together, these visualization and

145 evaluation techniques ensured the robustness and reliability

146 of the model.

147 Statistical analysis and software tools

148 Continuous variables were presented as mean § standard

149 deviation (SD) or median (p25, p75), depending on their dis-

150 tribution. Categorical variables were expressed as numbers

151 and percentages. The authors used the t-test or Wilcoxon

152 rank-sum test for continuous variables, and the chi-square

153 test for categorical variables, based on data distribution.

154 Descriptive statistics and data management were per-

155 formed using IBM SPSS Statistics (version 27). Feature selec-

156 tion with the Boruta algorithm was conducted in R using the

157 ‘Boruta’ package (version 4.3.1). Random forest modeling,

158 visualization, and evaluation were carried out in Python

159 (version 3.11).

160 Results

161 In this study, 107 infants were included. Table 1 presents the

162 demographic and clinical characteristics of both the non-

163 ASBO (n = 87) and ASBO (n = 20) groups. Notably, there is a

164 female majority in both groups, with a higher percentage of

165 females in the ASBO group. A significant finding is the longer

166 duration of surgery in the ASBO group compared to the non-

167 ASBO group. Correspondingly, the ASBO group required

168 extended MV duration postoperatively. Hematological analy-

169 sis revealed significant changes in specific blood parameters

170 when comparing pre-and post-operative values in both

171groups. Particularly, the ASBO group exhibited a substantial

172postoperative increase in WBC, potentially indicating a

173stronger inflammatory or stress response to surgery. Addi-

174tionally, the NLR, another critical systemic inflammation

175indicator, was notably higher in the ASBO group after sur-

176gery.

177Utilizing the Boruta algorithm with parameters “max-

178Runs = 100”, and “p-Value = 0.01”, optimal features were

179selected for predicting the target variable. Supplementary

180Figure S1 displays these results: the x-axis lists the evalu-

181ated features, and the y-axis shows their importance.

182Shadow attributes’ importance, a baseline metric for fea-

183ture selection derived from the algorithm, is depicted by

184three blue boxplots showing their minimum, mean, and max-

185imum values. Significant features included in the model are

186highlighted in green, while those excluded are shown in red.

187Yellow boxplots represent tentative features, with no defini-

188tive recommendation from the algorithm for their inclusion

189or exclusion. Of the 29 variables analyzed, 6 were identified

Table 1 Demographic and clinical characteristics.

non-ASBO, n = 87 ASBO, n = 20

gender

male 21 (24.1 %) 2 (10 %)

female 66 (75.9 %) 18 (90 %)

mode of delivery

vaginal delivery 28 (32.2 %) 10 (50 %)

cesarean section 59 (67.8 %) 10 (50 %)

rotation angle,

degree

360 (360,540) 540 (360,675)

days of age 8 (3,17) 7.5 (5,28)

birth weight, kg 3.21 (2.90,3.50) 3.29 (3.00,3.45)

admission weight,

kg

3.05 (2.70,3.60) 3.09 (2.72,3.98)

surgery duration,

minutes

65 (50,80) 108 (75,139)

MV duration, hours 5.5 (3.6,11.4) 15.9 (11.6,21.6)

pre-WBC, *10^9/L 6.6 (4.9,8.9) 9.7 (7.8,14.5)

pre-NLR 1.33 (0.98,2.14) 1.92 (1.22,2.7)

pre-RBC, *10^12/L 3.7 (3.2,4.2) 3.5 (3.1,3.8)

pre-HB, g/L 122 (108,137) 116 (100,132)

pre-PLT, *10^9/L 330 (247,420) 346 (224,426)

pre-CRP, mg/L 4 (4,4) 4 (4,4)

pre-TBIL, mmol/L 127.8

(51.9,179.7)

140.9

(70.5,185.5)

pre-LFTEI, U/L 47.3 (39.6,61.1) 48.3 (40.7,65.5)

pre-ALB, g/L 28.9 (23.4,34.0) 33.0 (29.0,36.2)

pre-BUN, mmol/L 3.4 (2.4,5.1) 5.0 (3.8,7.0)

time to SOF, days 6 (4,7) 7 (5,8)

post-WBC, *10^9/L 6.5 (5.0,7.8) 10.0 (7.7,13.1)

post-NLR 1.12 (0.81,1.76) 1.16 (0.91,1.80)

post-RBC, *10^12/L 3.4 (3.1,3.7) 3.2 (3.0,3.8)

post-HB, g/L 111 (99,121) 109 (95,120)

post-PLT, *10^9/L 380 (276,480) 409 (322,450)

post-CRP, mg/L 4 (4,4) 4 (4,4)

post-TBIL, mmol/L 45.1 (15.5,113.1) 76.9 (34.6,120.2)

post-LFTEI, U/L 43.1 (36.2,56.0) 54.4 (37.4,100.3)

post-ALB, g/L 38 (35,42) 34 (32,37)

post-BUN, mmol/L 5.2 (3.6,6.5) 5.3 (3.6,7.9)
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190 as significant, 1 remains tentative, and 22 were excluded.

191 The significant features are surgery duration, MV duration,

192 pre-operative WBC, pre-operative BUN, post-operative

193 LFTEI, and post-operative ALB, all contributing notably to

194 the model’s predictive accuracy.

195 Supplementary Figure S2 demonstrates the application of

196 nested cross-validation and grid search methods for select-

197 ing the optimal hyperparameter combination for the model,

198 which was determined to be “max_depth = 2” and “n_esti-

199 mators = 80”. This combination achieved a model accuracy

200 of 0.9004. Furthermore, the random forest model was con-

201 figured with the “class_weight” set to ‘balanced’ and the

202 “criterion” set to “entropy”, with all other parameters at

203 their default settings.

204 After finalizing the optimal hyperparameter settings, a

205 random forest model was constructed. The feature impor-

206 tance graph (Figure 2) displays the relative significance of

207 each variable in the model. Pre-operative white blood cell

208 count (pre-WBC) is the most influential feature with an

209 importance score of approximately 0.297, highlighting its

210 strong predictive power. The second most significant predic-

211 tor is mechanical ventilation duration (MV duration), scoring

212 around 0.23. Surgery duration follows with an importance

213 score of 0.167, and post-operative albumin levels (post-ALB)

214 also contribute notably with a score of 0.138. Pre-operative

215 blood urea nitrogen (pre-BUN) and post-operative liver func-

216 tion test enzyme index (post-LFTEI) have importance scores

217 of 0.088 and 0.08, respectively, indicating their meaningful

218 but lesser impact.

219 The partial dependence plots (PDPs, Supplementary

220 Figure S3) illustrate the relationships between predictor

221variables and the model’s predictions. It is important to

222note that PDPs assume the independence of the predictor

223variable being analyzed from all other predictors in the

224model. Both surgery duration and MV duration show an

225increasing influence on the model’s output, with MV duration

226plateauing after 10 h, indicating a threshold effect. Pre-WBC

227levels sharply increase in impact up to a certain point, sug-

228gesting a strong influence within specific ranges. Pre-BUN

229demonstrates a consistent, gradual influence, while post-

230LFTEI’s impact increases up to a certain level and then sta-

231bilizes. Notably, post-ALB levels display a non-linear effect,

232indicating a complex interaction with the outcome, where

233only specific ranges significantly alter the prediction. These

234patterns underscore the nuanced contribution of each clini-

235cal factor to the predictive model.

236The random forest model, comprising 80 decision trees, is

237exemplified by six trees in Supplementary Figure S4, provid-

238ing insight into the model’s decision-making process. These

239trees indicate that features such as pre-WBC, surgery dura-

240tion, and MV duration are key splitting factors, signifying

241their substantial role in the model.

242The ROC curve (Figure 3), derived from 1000 bootstrap

243replications, assesses the model’s discriminative ability. The

244mean ROC curve, shown by the blue line, demonstrates an

245excellent ability to differentiate between positive and nega-

246tive classes with an AUC of 0.96§ 0.02, indicative of out-

247standing model performance. The grey area around the

248mean ROC curve, representing the 95 % confidence interval,

249reflects the precision of the AUC estimation. The curve’s

250proximity to the top left corner and its elevation above the

251diagonal red dashed line underscore the model’s strong

Figure 2 Feature importance ranking for ASBO prediction in random forest model.
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252 predictive accuracy. The narrow confidence interval high-

253 lights the stability and consistency of the model across dif-

254 ferent samples. Sensitivity, specificity, precision, and F1

255 score, along with their 95 % confidence intervals, are

256 detailed in Supplementary Table S1.

257 Discussion

258 This study represents a significant leap in the application of

259 machine learning technology, specifically the random forest

260 algorithm, for predicting postoperative complications in

261 pediatric surgery. By leveraging this advanced algorithm,

262 the authors have been able to dissect a complex array of

263 clinical and laboratory data, enhancing the understanding of

264 risk factors associated with ASBO following intestinal malro-

265 tation surgery in infants. This is in line with the recent trend

266 of applying machine learning models to various aspects of

267 surgical care, such as postoperative pain,18 wound infec-

268 tion,19 and mortality.20 However, to the best of our knowl-

269 edge, this is the first study to use the random forest

270 algorithm for predicting ASBO in pediatric patients, which is

271 a challenging and clinically relevant problem.

272 The random forest model excels in handling multifaceted

273 and non-linear data, typical challenges in clinical

274 research.21 This enables accurate identification of key

275predictive variables, ranging from surgical duration to bio-

276chemical markers like pre-operative white blood cell count

277(pre-WBC) and post-operative albumin levels (post-ALB).

278Utilizing this method for risk prediction not only improves

279the understanding of postoperative courses but also aids in

280developing early intervention strategies. Previous studies

281have shown that early operative management of ASBO can

282be cost-effective and reduce the risk of recurrence and com-

283plications.22 However, the optimal timing and indications for

284surgery are still controversial and depend on various factors,

285such as the presence of strangulation, ischemia, or peritoni-

286tis.13 Therefore, having a reliable and robust predictive

287model can help surgeons to make informed decisions and tai-

288lor the treatment to individual patients. Additionally, the

289present study fills a significant gap in existing literature by

290focusing on the early prediction of ASBO in a previously

291underexplored demographic: infants undergoing intestinal

292malrotation surgery. The present research provides essential

293insights into postoperative risks for these young patients and

294offers a valuable predictive tool for clinicians to identify and

295manage ASBO early, which is crucial considering the vulnera-

296bility of this patient group and the potential for improved

297outcomes through early detection and intervention. The

298incidence of ASBO after laparotomy during infancy is

299reported to be between 1 and 12.6 %,23 and it can cause sig-

300nificant morbidity and mortality, especially in cases of

Figure 3 Bootstrap aggregate roc curve for ASBO prediction model performance.
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301 recurrent volvulus or necrotizing enterocolitis.6 Therefore,

302 it is imperative to identify the risk factors and preventive

303 measures for ASBO in this population, as well as to monitor

304 and treat them promptly if they occur.

305 The present research involved a retrospective analysis of

306 clinical parameters from patients under three months old,

307 focusing on key variables including pre-WBC, MV duration,

308 surgery duration, and post-ALB. The model exhibited high

309 diagnostic accuracy with an AUC of 0.960, indicating its

310 potential for early identification of patients at risk for ASBO.

311 There are four variables with a feature importance greater

312 than 10 %, pre-WBC, MV duration, surgery duration, and post-

313 ALB. Elevated preoperative pre-WBC levels are indicative of a

314 preoperative inflammatory state, potentially increasing the

315 risk of postoperative complications such as ASBO. This under-

316 lines the importance of managing preoperative inflammation

317 to mitigate such risks. Studies have consistently shown a strong

318 correlation between preoperative leukocyte elevation or infec-

319 tion status and the occurrence of postoperative complications.

320 For instance, Mahmood et al.24 found in cardiac surgery

321 patients that elevated preoperative white blood cells were sig-

322 nificantly associated with increased risks of 30-day mortality,

323 wound complications, and other medical complications. Simi-

324 larly, research focusing on risk factors for early postoperative

325 ileus in elective colorectal surgery patients identified that vari-

326 ables like preoperative antibiotic use and the duration of anti-

327 biotic treatment were linked to a heightened risk of early

328 postoperative ileus.25 These findings suggest that such factors

329 might serve as indirect indicators of the effects of preoperative

330 infection status on postoperative outcomes.

331 The present research reveals a direct correlation

332 between the duration of surgery and the increased risk of

333 ASBO. Prolonged surgical procedures often indicate a higher

334 level of complexity or extensiveness, leading to more signifi-

335 cant tissue damage and enhanced inflammatory responses.

336 It has been established through studies that these inflamma-

337 tory responses, resulting from tissue damage and the surgi-

338 cal process, can potentially trigger the formation of

339 adhesions.26,27 Additionally, these postoperative adhesions

340 are integrally associated with the body’s healing mecha-

341 nisms for damaged tissue, therefore, the development of

342 adhesions is part of the body’s natural response to surgical

343 trauma, serving to heal and safeguard the affected area.28

344 The present study shows that prolonged postoperative MV

345 use is associated with an increased incidence of ASBO.

346 Research indicates that mechanical ventilation, particularly

347 at high positive end-expiratory pressures, can diminish

348 splanchnic perfusion. This reduction in blood flow, especially

349 in the splanchnic area encompassing the gastrointestinal

350 tract, significantly impacts gastrointestinal function.29 Con-

351 sequently, prolonged MV after surgery is often indicative of a

352 complex recovery process, heightening the risk of delayed

353 bowel function and ASBO. Therefore, it is essential to limit

354 the duration of MV to mitigate the risk of ASBO. Moreover,

355 lower ALB levels post-surgery poses an additional risk,

356 potentially worsening postoperative complications.30 A

357 decline in ALB levels may reflect either compromised nutri-

358 tional status or systemic inflammation, both detrimental to

359 the healing process. Such decreases in ALB levels are fre-

360 quently indicative of the body’s stress response to surgery,

361 which can amplify the likelihood of complications like ASBO

362 by impairing immune function and delaying tissue repair.

363However, this study’s limitations include a modest sample

364size, its retrospective design, and data sourced from a single

365medical center. While the bootstrap method strengthens the

366present model’s validation, further external validation in a

367broader, independent patient population is needed. The

368small sample size and single-center context limit the mod-

369el’s generalizability and the ability to establish causation.

370Future research should incorporate larger, multi-center, pro-

371spective studies to enhance data diversity, improve gener-

372alizability, and allow for more controlled data collection.

373Prospective studies are crucial for validating predictive

374models and establishing causal relationships. Integrating

375this model into various clinical settings will require adapt-

376ability across different patient populations. Future efforts

377should aim at refining the model for wider pediatric surgical

378contexts and maintaining transparency in its predictive pro-

379cesses for effective clinical decision-making.

380In conclusion, this study introduces a promising machine

381learning-based method to predict ASBO in infants with intes-

382tinal malrotation post-surgery. The model’s high accuracy

383and robust performance metrics underscore its potential in

384clinical decision-making, aiming to enhance patient man-

385agement and improve outcomes in this vulnerable group.

386Future studies are necessary to validate and integrate this

387model into clinical workflows, thereby improving precision

388in pediatric surgical care.
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