Prevalence of asthma and allergic diseases in adolescents: nine-year follow-up study (2003-2012)☆,☆☆

Dirceu Solé a,*, Nelson A. Rosário Filho b, Emanuel S. Sarinho c, Inês C. Camelo-Nunes a, Bruno A. Paes Barreto d, Mércia L. Medeiros e, Jackeline Motta Franco f, Paulo A. Camargos g, Javier Mallol h, Ricardo Gurgel f, Djanira M. de Andrade a, Fernanda P. Furlan a, Almerinda R. Silva c, Cristina Cardozo b, Cláudia Andrade g

a Department of Pediatrics, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
b Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
c Department of Pediatrics, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
d Universidade Estadual do Paraná (UEPA), Belém, PA, Brazil
e Department of Pediatrics, Universidade Federal de Alagoas (UFAL), Maceió, AL, Brazil
f Department of Pediatrics, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil
g Department of Pediatrics, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
h Universidade de Santiago (USACH), Santiago, Chile

Received 27 March 2014; accepted 30 May 2014
Available online 18 July 2014

Keywords
Asthma;
Adolescent;
Atopic eczema;
Epidemiology;
Allergic rhinitis;
Rhiachoconjunctivitis

Abstract
Objective: To determine the prevalence of symptoms of asthma, rhinitis, and atopic eczema in adolescents (AD; 13-14 years) living in seven Brazilian cities, by applying the standardized written questionnaire (WQ) of the International Study of Asthma and Allergies in Childhood (ISAAC), and to evaluate the time trend nine years after the last assessment of ISAAC phase 3 (ISP3).
Methods: The ISAAC-WQ was answered by 20,099 AD from the Northern, Northeastern, Southern, and Southern Brazilian regions. Values obtained were compared to those observed...
Introduction

The prevalence of asthma and allergic diseases in children has shown wide variation worldwide and according to some authors, it has increased, especially in developing countries. Up to a few decades ago this knowledge was limited, for lack of a single, standardized, and validated tool to be used universally, and restricted to studies were performed in small samples, which precluded comparisons between different populations and at different times.

After the International Study of Asthma and Allergies in Childhood (ISAAC), which created a standardized protocol, such comparisons became possible; since then, have been widely performed. Before the ISAAC protocol, few studies, using the same tool (written questionnaire [WQ]), were able to evaluate the temporal trend of the prevalence of asthma, rhinitis, and atopic eczema in children. One of these studies assessed Norwegian children aged 7 to 14 years between 1985 and 2008, regarding the prevalence of asthma, rhinitis, and atopic eczema; a trend of increasing asthma and rhinitis prevalence and stabilization for eczema was observed. Another study, with a longer follow-up, conducted from 1964 to 2004 in English schoolchildren (7-12 years) observed declining rates of wheezing, with an increase in rhinoconjunctivitis and atopic eczema.

The mean time between the completion of ISAAC Phase 1 (ISF1) and ISAAC Phase 3 (ISF3) was seven years, and the prevalence rates obtained in all centers that concurrently participated in both phases showed conflicting results, mainly in those centers that presented high values. In Brazil, an increase in the prevalence of asthma symptoms in schoolchildren aged 6-7 years from 21.3% in ISF1 to 24.4% in ISF3 and a stable prevalence of rhinoconjunctivitis (12.5% and 12.0%, respectively) and atopic eczema (6.8% and 6.8%, respectively) were observed. Among adolescents (ADs) there was a decrease in prevalence rates of asthma symptoms (22.7% to 19.9%, respectively), rhinoconjunctivitis (16.2% to 15.8%, respectively), and atopic eczema (5.3% to 4.2%, respectively).

At that time, there was no unanimous explanation for the previously observed findings. This study aimed to determine the variations in the prevalence of asthma, rhinitis, and atopic eczema in Brazilian ADs nine years after ISF3 was completed.
Subjects and method

Seven of the 21 centers participating in the ISF3 in Brazil accepted the invitation to participate in this study, nine years after its completion. The study was supported by FAPESP (Project PPSUS No. 2009-53303-5). The recommended criteria were met in all centers and the ADs were selected as recommended by the ISAAC protocol. With the exception of Belém (state of Pará, North [N]), all other centers had their ISF3 data approved by the ISAAC International Data Center, and the following were categorized as official centers: Recife (Pernambuco, Northeast [NE]); Maceió (Alagoas, NE); Aracaju (Sergipe, NE); Belo Horizonte (Minas Gerais, Southeast [SE]); São Paulo (São Paulo, SE); and Curitiba (Paraná, South [S]) (Tables 1 and 2).

In all participating centers, ADs (13-14 years old) were selected from public and private schools. Data on number of schools and students enrolled were provided by the respective Departments of Education of each center, and a minimum of 1,000 students were assessed. The study was approved by each Research Ethics Committee, and all subjects signed an informed consent; data collection initiated in 2011 and was completed in 2012. The general project was approved by Universidade Federal de São Paulo Hospital São Paulo Research Ethics Committee (n. 1345/09).

After defining the sample in each of the cities, the ISAAC WQ, previously translated into Brazilian Portuguese and culturally validated, was completed by ADs in their classrooms (n = 20,099), which yielded a high rate of properly filled out questionnaires. Data were manually transferred to the database provided by the general coordinators of ISAAC protocol.

From the ISAAC-WQ asthma module, the following questions were considered: wheezing at some time; wheezing in the last 12 months (current asthma); wheezing severe enough to limit speech in the last 12 months (severe asthma); physician-diagnosed asthma (asthma at some time in life); wheezing at exercises; and nocturnal cough.

From the ISAAC-WQ rhinitis module, the following questions were considered: sneezing, runny nose and nasal obstruction at some time in the past 12 months (rhinitis), and nasal problems associated with itchy and watery eyes in the last 12 months (rhinoconjunctivitis).

From the ISAAC-WQ eczema module, the following questions were considered: skin rash that appeared and disappeared in the last 12 months (eczema) and this characteristic rash in places such as skinfolds and buttocks (atopic eczema).

The values obtained were compared to those previously published in ISF3 and expressed as an annual percentage of change (Table 2). Data analysis was performed with non-parametric tests, chi-squared test, or Fisher’s exact test and 5% was established as the rejection level for the null hypothesis.

Results

Table 1 summarizes the percentage data on the prevalence of symptoms of asthma, rhinitis, and eczema of ADs from seven Brazilian centers that participated in the ISF3, as well as the current values, obtained nine years later. Comparative analysis between the values obtained in the two studies was performed in each center; significantly higher values were identified.

Considering the general data, a significant decrease was observed in the prevalence of wheezing at some time in life, wheezing in the previous year (active asthma), and wheezing associated with exercise during this period (Table 1). Conversely, there was a significant increase in the prevalence of physician-diagnosed asthma, nocturnal cough, nasal symptoms without having a cold (rhinitis), rhinoconjunctivitis, and atopic eczema (Table 1). Regarding the annual percentage of change, a decrease of 0.41%/year was observed for the prevalence of wheezing at some time in life and an increase of 0.6%/year for the reporting of nocturnal cough (Table 2). For nasal symptoms, there was an increase of 0.68%/year for rhinitis and 0.55%/year for rhinoconjunctivitis, as well as a 0.08% annual increase for atopic eczema (Table 2).

Discussion

When the prevalence rates observed in different centers participating in this study are analyzed, nine years after the end of ISF3, a distinct and variable behavior can be observed. In general, a decline in the prevalence of active asthma and an increase in the prevalence of rhinitis, rhinoconjunctivitis, as well as atopic eczema were observed (Tables 1 and 2).

Regarding asthma and related symptoms, it was observed that the decrease in the prevalence of active asthma was partly due to the decrease observed in Belém and Aracaju, despite the significant increase that occurred in São Paulo. Moreover, there was a significant increase in the prevalence of physician-diagnosed asthma, which ranged between 14.3% and 17.6% in all centers, except Belém and Aracaju. Conversely, the number of severe events (speech impairment) remained unchanged, as opposed to nonspecific symptoms such as nocturnal cough, which increased (Tables 1 and 2).

What happened during this time interval that would explain these changes? When analyzing the period of 18 years since the ISF1 data were obtained, it can be observed that the Human Development Index (HDI) in Brazil increased, going from 0.724 in 1993/1994 to 0.807 in 2012. This increase was observed in all centers involved in the study; however, it was more pronounced in the NE and N regions. There was no significant correlation between HDI and the prevalence of active asthma, rhinoconjunctivitis, and atopic eczema in both 2003 and 2012 (data not shown).

These data are corroborated when considering the fact that the Gross Domestic Product presented the same behavior, going from US $3,040 in 1994 to US $11,630 in 2012. Although the country economic status did improve, to infer that such improvement is responsible for the changes in the prevalence rates observed herein is a fragile assumption. Moreover, after the 2000s, asthma treatment improved, as the creation of the National Asthma Control Plan (Plano Nacional de Controle da Asma - PNCA) started providing drug therapy for patients with severe asthma and was extended in 2005 to patients with mild or moderate asthma.
Table 1 Prevalence of affirmative responses to the questions on symptoms of asthma, rhinitis and eczema of the written questionnaire of the International Study of Asthma and Allergies in Childhood given by adolescent from the centers that participated in the ISAAC phase 3 study and in the current study.

<table>
<thead>
<tr>
<th>Question</th>
<th>Belém</th>
<th>Recife</th>
<th>Maceió</th>
<th>Aracaju</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003 n = 1,773</td>
<td>2012 n = 3,708</td>
<td>2003 n = 2,865</td>
<td>2012 n = 3,628</td>
</tr>
<tr>
<td>Wheezing at some time</td>
<td>43.1b</td>
<td>38.7</td>
<td>37.8b</td>
<td>29.5b</td>
</tr>
<tr>
<td>Wheezing in 12 months</td>
<td>23.1b</td>
<td>20.7</td>
<td>19.1</td>
<td>14.8</td>
</tr>
<tr>
<td>Speech impairment</td>
<td>5.0</td>
<td>6.0</td>
<td>4.1</td>
<td>5.0b</td>
</tr>
<tr>
<td>Asthma diagnosis</td>
<td>32.8b</td>
<td>29.3</td>
<td>18.0</td>
<td>13.8</td>
</tr>
<tr>
<td>Nocturnal cough</td>
<td>45.7</td>
<td>51.1b</td>
<td>37.3</td>
<td>42.0</td>
</tr>
<tr>
<td>Rhinconjunctivitis</td>
<td>47.4b</td>
<td>44.2</td>
<td>35.8b</td>
<td>26.4</td>
</tr>
<tr>
<td>Skin symptoms</td>
<td>11.8</td>
<td>12.5</td>
<td>10.1</td>
<td>7.5</td>
</tr>
<tr>
<td>Atopic eczema</td>
<td>6.2</td>
<td>7.9b</td>
<td>5.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Belo Horizonte</th>
<th>São Paulo</th>
<th>Curitiba</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003 n = 3,088</td>
<td>2012 n = 2,642</td>
<td>2003 n = 3,161</td>
<td>2012 n = 3,628</td>
</tr>
<tr>
<td>Wheezing at some time</td>
<td>47.3</td>
<td>45.5</td>
<td>44.6</td>
<td>40.7</td>
</tr>
<tr>
<td>Wheezing in 12 months</td>
<td>17.8</td>
<td>19.7</td>
<td>18.7</td>
<td>18.9</td>
</tr>
<tr>
<td>Speech impairment</td>
<td>4.8</td>
<td>5.0</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Asthma diagnosis</td>
<td>9.8</td>
<td>17.3b</td>
<td>10.4</td>
<td>9.2</td>
</tr>
<tr>
<td>Nocturnal cough</td>
<td>18.6</td>
<td>21.7b</td>
<td>17.0b</td>
<td>19.1</td>
</tr>
<tr>
<td>Nasal symptoms in 12 months</td>
<td>37.4</td>
<td>39.3</td>
<td>33.3</td>
<td>34.7</td>
</tr>
<tr>
<td>Skin symptoms</td>
<td>26.1</td>
<td>34.1b</td>
<td>27.4</td>
<td>39.2b</td>
</tr>
<tr>
<td>Atopic eczema</td>
<td>14.5</td>
<td>18.3b</td>
<td>12.2</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Speech impairment, wheezing so intense that was able to prevent two consecutive words from being said in the last 12 months; Wheezing at exercise, wheezing during exercise in the past 12 months; Nocturnal cough, coughing at night without having a cold in the last 12 months; Nasal symptoms in 12 months, sneezing, runny nose or nasal stuffiness at some time in the last 12 months; Rhinoconjunctivitis, nasal problem with itching and watery eyes in the last 12 months; Skin symptoms, itchy rash that appeared and disappeared in the last 12 months; Atopic eczema, itchy rash that appeared and disappeared in the last 12 months and in characteristic locations (skinfolds, among others).

a Official ISAAC Center phase III.
b Chi-squared test: p < 0.001.
In conclusion, the present study found that the prevalence of active asthma has possibly reached its highest level and has stabilized. Would this fact be due to the reduction in levels of air pollution? If so, how can the increased prevalence of rhinitis, rhinoconjunctivitis, and atopic eczema be explained? Possible explanations for these findings still require further studies that are targeted for these primary outcomes.

Funding

Conflicts of interest

The authors declare no conflicts of interest.

References