

Wanderley Marques Bernardo^{a,*}, Felipe Toyama Aires^b, Renata Mota Carneiro^b, Fernando Pereira de Sá^c, Vera Esteves Vagnozzi Rullo^d, and Dennis Alexander Burns^e

^a Cientific Coordinator, Projeto Diretrizes, Associação Médica Brasileira and Conselho Federal de Medicina. Professor, Evidence-based Medicine, Faculdade de Ciências Médicas de Santos (UNILUS), Santos, SP, Brazil

^b Medical Student, UNILUS, Santos, SP, Brazil

^c Specialist, Sociedade Brasileira de Pediatria. Professor, Clinical Pediatrics, UNILUS, Santos, SP, Brazil

^d Post-doctorate, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil. Professor, Clinical Pediatrics, UNILUS, Santos, SP, Brazil

^e Director, Sociedade Brasileira de Pediatria. President, Sociedade de Pediatria do Distrito Federal, Brasília, DF, Brazil

Received 29 August 2012; accepted 11 September 2012

^{*}Please, cite this article as: Bernardo WM, Aires FT, Carneiro RM, Sá FP, Rullo VE, Burns DA. Effectiveness of probiotics in the prophylaxis of necrotizing enterocolitis in preterm neonates: a systematic review and meta-analysis.

J Pediatr (Rio J). 2013;89:18-24.

^{*}Corresponding author.

E-mail: wmbernardo@usp.br (W.M. Bernardo).

^{0021-7557 © 2013} Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. Este é um artigo Open Access sob a licença de CC BY-NC-ND http://dx.doi.org/10.1016/j.jped.2013.02.004

PALAVRAS-CHAVE Enterocolite necrosante; Probióticos; Prematuros

Eficácia dos probióticos na profilaxia de enterocolite necrosante em recém-nascidos prematuros: revisão sistemática e meta-análise

Resumo

Objetivo: Elucidar os benefícios do uso de probióticos na prevenção de enterocolite necrosante (ECN) e de suas complicações em recém-nascidos prematuros.

Método: Revisão sistemática de ensaios clínicos randomizados, que incluiu pesquisas efetuadas em três bases de dados (MEDLINE, EMBASE e LILACS), utilizando a combinação dos termos (*necrotizing enterocolitis*) AND (*probiotics*).

Resultados: Foram incluídos 11 ensaios clínicos randomizados, totalizando 2.887 pacientes, sendo 1.431 no grupo Probiótico e 1.456 no grupo Controle. Houve redução na incidência de ECN (NNT = 25), de morte global (NNT = 34) e sepse neonatal (NNT = 34) no grupo Probiótico em relação ao grupo Controle. Pacientes alimentados com suplementação de probióticos tiveram tempo de reintrodução alimentar (p < 0,001) e de hospitalização (p < 0,001) menor quando comparados aos que não receberam. Não houve diferença na mortalidade causada por ECN.

Conclusão: Em recém-nascidos prematuros, o uso de probióticos é eficaz na profilaxia de ECN e de suas complicações.

© 2013 Sociedade Brasileira de Pediatria. Publicado por Elsevier Editora Ltda.

Este é um artigo Open Access sob a licença de CC BY-NC-ND

Introduction

Necrotizing enterocolitis (NEC) is multifactorial disease that results from the interaction between the loss of integrity of the intestinal mucosa and the host response to this damage. It is determined by intestinal ischemia, mucosal damage, edema, ulceration, and passage of air or bacteria through the wall, resulting in necrosis of the mucosa and intestinal wall.

The main preexisting factors that cause increased risk for developing NEC are prematurity, enteral feeding, and colonization by pathogenic microorganisms such as *Escherichia coli*, *Klebsiella*, *Clostridium perfringens*, *Staphylococcus epidermidis* and *Rotavirus*.¹

This is the most prevalent emergency of the gastrointestinal tract in the neonatal period.² Its incidence is highly variable, affecting 2% to 22% of newborns with very low birth weight (< 1,500 g).^{2,3}

The occurrence of NEC is inversely related to gestational age at birth, due to the physiological intestinal immaturity of preterm neonates. Therefore, probiotics, a group of organisms capable of improving this clinical picture, have been studied in order to fight disease progression.

Probiotics were first described in the literature by Lilly and Stillwell in 1965, as growth-promoting factors produced by certain microorganisms. Recently, they have been described as living organisms which, when included in the diet in adequate amounts, can bring health benefits to the host.⁴ As microorganisms able to colonize the digestive tract by adhering to the intestinal epithelium, producing antimicrobial substances, and modulating the immune response and host metabolism, probiotics have been discussed regarding their usefulness for preterm infants.^{5,6}

This study aimed to elucidate the benefits of probiotics in the prevention of NEC and its complications in preterm infants.

Methods

Study identification and selection

In order to perform a systematic analysis of the available evidence on the efficacy of probiotics in the prevention of NEC, a literature search strategy was used, which included searches carried out in MEDLINE, Embase, and LILACS. The searches were completed in May 2012.

The MEDLINE search was performed through PubMed (www.ncbi.nlm.nih.gov/pubmed) and was adapted by using the terms (necrotizing enterocolitis) AND (probiotics). The same strategy was used in the Embase database. For LILACS, the terms (enterocolite) AND (probióticos) were used.

Also, a manual search was conducted through the references of pre-selected studies and published reviews on the subject.

Inclusion and exclusion criteria

Study design: only randomized and controlled trials (phase III studies) were included.

Patients: premature newborns (< 34 weeks of gestational age) and/or very low birth weight (< 1,500 g at birth) regardless of gestational age. Studies that included patients with more than 34 weeks of gestational age and 1,500 g at birth and those in which it was not possible to establish these limits were excluded from the analysis.

Intervention: Newborns who received supplementation with probiotics (regardless of the nature, mode of preparation, and dose) added to enteral nutrition with human milk and/ or formula;

Control: Newborns who received only enteral nutrition with human milk and/or formula.

Analyzed outcomes

The outcomes analyzed were incidence of NEC \geq Bell stage II,⁷ overall mortality, mortality from NEC, sepsis incidence, time to reintroduction of oral feeding, and hospitalization.

Methodological quality and internal validity

A detailed assessment of quality of the studies was conducted, aiming to evaluate the strength of evidence and the validity of their inclusion in this review. The Jadad scale⁸ was used, and only studies with a score equal to or greater than 3 were included in this review.

The individual characteristics of each study included in the review were analyzed according to the Consolidated Standards of Reporting Trials (CONSORT) recommendations.⁹

Statistical analysis

All data were analyzed by intention to treat, thus the study participants were assessed in groups to which they were randomized regardless of treatment and protocol irregularities. The possible losses to follow-up were considered unfavorable clinical outcome.

The measures of effectiveness or damage expressed in absolute numbers were analyzed by the difference in absolute risk, adopting a confidence interval of 95%. For all statistically significant results, the numbers needed to treat (NNT) and numbers needed to harm (NNH) were calculated.

For the analysis of continuous data, the differences of weighted means between the groups were used. The studies that did not express data as means and their respective standard deviations were not included in the analyses.

Heterogeneity and sensitivity analysis

Inconsistencies between trials were estimated using the chi-squared test for heterogeneity, and quantified using the I^2 test. A value above 50% was considered significant.

A sensitivity analysis was performed, including only studies that obtained results with power > 80%.

Results

Study selection

268 studies were retrieved through electronic searches (MEDLINE = 190; Embase = 73, and LILACS = 5). Of these, 18 randomized and controlled trials were selected to be read in full.¹⁰⁻²⁷ Six studies were identified through manual search, as they did not fit the strategy used^{28,29} or were indexed in another database.³⁰⁻³³ After this phase, eight studies were excluded because they did not meet inclusion criteria: five studies did not evaluate the study population;^{10,14,19,25,29} one study did not assess the selected outcomes;¹⁸ and two studies were classified as Jadad < 3.^{13,28} Four studies were not included because they were published in the Chinese

language, which made data comprehension and extraction impossible.³⁰⁻³³

Thus, this review included data from twelve randomized and controlled trials,^{11,12,15-17,20-24,26,27} totaling 2,907 patients, with 1,441 in the probiotics group and 1,466 in the control group.

Primary study description

Data on the interventions evaluated in each primary study are described in Table 1.

Effect of probiotics on necrotizing enterocolitis

In the probiotics group, the incidence of NEC stage ≥ 2 was 3.2%, whereas in the control group it was 7.2%. There was a decrease in the absolute risk by 4.0% (95% CI: 0.02 to 0.06, p < 0.001, $I^2 = 37\%$; Figure 1) and it was necessary to treat 25 patients to obtain this benefit.

Effect of probiotics on mortality

The mortality rate in the study group was 5.5%, whereas in the control group it was 8.4%. Probiotics reduce the absolute risk of death by 3.0% (95% CI: 0.01 to 0.05, p < 0.002; $I^2 = 59\%$; Figure 1) and it was necessary to treat 34 patients to obtain this benefit.

When excluding the study that generated high heterogeneity,¹² the effect achieved in the previous analysis is sustained (p < 0.002 and $l^2 = 14\%$).

Only five primary studies analyzed mortality from NEC.^{12,15,20,24,27} There was no statistical difference between the probiotic and placebo groups (2.6% vs. 3.0%, p = 0.64, $l^2 = 0\%$; Figure 1).

Effect of probiotics on sepsis

All studies analyzed the incidence of neonatal sepsis as the outcome. Patients receiving probiotics had a lower incidence of sepsis when compared to those not receiving them, but with no significant difference (17.9% vs. 20.6%, 95% CI: 0.00 to 0.05, p = 0.05, $l^2 = 57\%$; Figure 1).

The same effect is obtained when excluding the study that generated significant heterogeneity²¹ (p = 0.32, $l^2 = 21\%$).

Effect of probiotics on time to oral feeding reintroduction

Eight primary studies evaluated the time to oral feeding reintroduction.^{15,17,20,21,23,24,26,27} The patients that received supplementation with probiotics had oral feeding reintroduction, on average, three days earlier than the control group (95% CI: 2.78 to 3.69 days, p <0.001). However, this result is related to a high heterogeneity ($l^2 = 94\%$).

Effect of probiotics on time of hospitalization

Six primary studies assessed the duration of hospitalization in a neonatal intensive care unit.^{11,16,20,22,23,27} Two studies

Study	Probiotic agent	Dose and duration	Milk
Millar et al. ¹¹ Dani et al. ¹² Bin-Nun et al. ¹⁵	Lactob GG Lactob GG Bifidobac infantis	10 ⁸ CFU twice a day, for 14 days 6x10 ⁹ CFU once a day until discharge 3.5x10 ⁸ CFU of each, once a day up to corrected gest. age of 36 weeks	Human and/or formula Human and/or formula Human and/or formula
14	Bifidobac bifidum Strepto thermophilus		
Lin et al. ¹⁶	Lactob acidophilus Bifidobac infantis	10º organisms of each, twice a day from seventh day until discharge	Human
Manzoni et al. ¹⁷		6x10 ⁹ CFU once a day, from third day until six weeks or until discharge	Human
Lin et al.20	Lactob acidophilus Bifidobac bifidum	2x10 ⁹ CFU once a day up to six weeks	Human and formula
Manzoni et al. ²¹	Lactob rhamnosus	6x10 ⁹ CFU once day, for four to six weeks or until disacharge	Human and/or formula
Rouge et al. ²²	Bifidobac longum Lactob rhamnosus	10 ⁸ CFU once a day until discharge	Human and/or formula
Samanta et al. ²³	Bifidobac infantis Bifidobac bifidum Bifidobac longum Lactob acidophilus	2.5x10 ⁹ CFU once a day until discharge	Human
Mihatsch et al. ²⁴ Braga et al. ²⁶	Bifidobac lactis Bifidobac breve	1.2x10 ¹⁰ CFU/kg once a day, until six weeks 3.5x10 ⁷ to 3.5x10 ⁹ CFU once a day, from second to 30 th day or until discharge	Human and/or formula Human
Sari et al. ⁷	Lactob casei Lactob sporogenes	3.5x108 CFU once a day, until discharge	Human and/or formula

Tuble I Ducu on interventions evaluated in printary stadies.	Table 1	Data on interventions	evaluated in	primary studies.
--	---------	-----------------------	--------------	------------------

provided data as medians and were not included in the meta-analysis.^{11,27} Patients who received probiotics stayed, on average, six days less in the hospital (95% CI: 5.12 to 7.09 days, p < 0.001, $l^2 = 88\%$) when compared to those who did not.

Power of primary studies

The power established in each primary study, regarding each outcome, is described in Table 2.

Analysis of sensitivity

Through the analysis of sensitivity, including only studies that had statistical power greater than 80%, patients who received probiotics had a lower incidence of NEC (NNT = 13). There was no difference in overall mortality, mortality from NEC, and the incidence of sepsis between the groups.

Discussion

Although NEC is still a major challenge in neonatology, much information has been obtained to elucidate its pathogenesis, allowing a better study of its management and prevention. Special attention has been given to supplementation with probiotics for preterm infants, especially those with very low birth weight, in an attempt to reduce the incidence of this disease.

Probiotics are living microorganisms offered as nutritional supplements that act in the intestine of the host organism by regulating the local bacterial flora. They act by improving gastrointestinal permeability and increasing the resistance of the mucosa against bacterial penetration. Regarding the protection mechanisms, they: (i) increase the resistance of the intestinal barrier against the passage of bacteria and their toxins, (ii) modify the host response in relation to microbial products, (iii) increase the mucosal response to IgA, (iv) produce bactericidal substances, and (v) competitively exclude potential pathogens.^{5,6}

This review aimed to assess the best evidence available in the literature to elucidate the benefits of probiotics in preterm neonates. Only randomized and controlled trials with well-defined protocols were included, to control possible biases as much as possible. The validity of the results can be potentially compromised due to different doses and preparation methods of the intervention being studied. Non-inclusion of the four studies published in the Chinese language, for which it was not possible to perform critical analysis, must also be considered.

The set of results showed, with consistent data, that enteral administration of probiotics reduced the incidence of severe cases of NEC, mortality, and sepsis, as well as

Study Events Total Weight F-M, fixed, 95% Cl F Inclance of ECN 1 72 10 73 5.0% -0.12 [-0.21, -0.04] Braga et al. [®] 0 122 4 121 8.4% -0.03 [-0.07, 0.00] Dani et al. [®] 0 122 4 121 8.4% -0.04 [-0.08, -0.01] Dani et al. [®] 0 1 8.4% -0.04 [-0.08, -0.01] Dani et al. [®] 0 1 39 3 41 2.8% -0.05 [-0.10, -0.02] Marxoni et al. ²¹ 0 151 10 168 11.0% -0.06 [-0.10, -0.02] Marxoni et al. ²¹ 0 151 10 168 1.0% -0.06 [-0.10, -0.02] Marxoni et al. ²¹ 0 151 10 168 1.0% -0.06 [-0.10, -0.02] Sani et al. ²¹ 5 91 15 95 6.4% -0.01 [-0.19, -0.02] Sani et al. ²¹ 7 121 20 121 8.4% -0.02 [-0.12, 0.07] Sani et al. ²¹ 5 91 155 55 6.4% -0.01 [-	M, fixed, 95% C
Bin-Nun et al. ¹⁵ 1 72 10 73 5.0% -0.12 [-0.21, -0.04] Braga et al. ⁸⁶ 0 122 4 1121 8.4% -0.03 [-0.07, 0.00] Dani et al. ¹² 4 295 8 200 20.3% -0.01 [-0.04, 0.01] Lin et al. ⁹⁰ 9 222 18 221 15.4% -0.04 [-0.08, -0.01] Manzoni et al. ¹⁷ 1 39 3 41 2.8% -0.05 [-0.14, 0.05] Manzoni et al. ¹⁷ 0 151 10 168 11.0% -0.06 [-0.10, -0.02] Minatsch et al. ²⁴ 4 93 5 90 6.3% -0.01 [-0.08, 0.05] Rouge et al. ²⁷ 2 45 1 49 3.3% -0.02 [-0.16, 0.05] Samata et al. ²⁷ 7 11 20 168 41.0% -0.04 [-0.09, 0.01] Samata et al. ²⁷ 7 11 15 95 6.4% -0.02 [-0.12, 0.07] Subtotal (95% CI) 1431 15 95 6.4% -0.02 [-0.12, 0.07] Subtotal (95% CI) 104 Heterogeneity: Ch ² = 15.85 d = 10 (p = 0.10); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001; l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 37% Overall effect test: Z = 4.97 (p < 0.0001); l ² = 0.0001] Effect effect test: Z = 4.97 (p < 0.0001); l ² = 0.0001] Dani et al. ¹⁹ 7 180 20 187 12.7% -0.07 [-0.15, 0.02] Effect effect effe	<u> </u>
Bin-Nun et al. ¹⁶ 1 72 10 73 5.0% $-0.12 [-0.21, -0.04]$ Brage at al. ⁶⁰ 0 122 4 121 8.4% $-0.03 [-0.07, 0.00]$ Dani et al. ¹⁶ 2 180 10 187 12.7% $-0.04 [-0.08, -0.01]$ i.n et al. ¹⁶ 2 180 10 187 12.7% $-0.04 [-0.08, 0.01]$ i.n et al. ¹⁷ 1 39 3 41 2.8% $-0.06 [-0.14, 0.05]$ Wanzoni et al. ¹⁷ 0 151 10 168 11.0% $-0.06 [-0.10, -0.02]$ Wintasch et al. ²⁴ 4 93 5 90 6.3% $-0.01 [-0.08, 0.05]$ Sauge et al. ²⁷ 17 12 20 12 8.4% $-0.02 [-0.12, 0.07]$ Sati et al. ²⁷ 17 17 100 14 1456 100.% $-0.04 [-0.06, -0.02]$ Sati et al. ²⁶ 10 [0 = 0.10); P = 37% 5 104 14 1456 100.% $-0.07 [-0.15, 0.02]$ Sarag et al. ³⁶ 26 122 27 121 8.4% $-0.07 [-0.15, 0.02]$	
Braga et al. ³⁶ 0 122 4 121 8.4% $-0.03 \begin{bmatrix} -0.07, 0.00 \end{bmatrix}$ Dani et al. ¹⁶ 4 295 8 290 20.3% $-0.01 \begin{bmatrix} -0.04, 0.01 \end{bmatrix}$ Lin et al. ¹⁶ 2 180 10 187 12.7% $-0.04 \begin{bmatrix} -0.08, -0.01 \end{bmatrix}$ J.in et al. ¹⁷ 1 39 3 41 2.8% $-0.05 \begin{bmatrix} -0.14, 0.05 \end{bmatrix}$ Vanzoni et al. ²⁷ 0 151 10 168 11.0% $-0.06 \begin{bmatrix} -0.00, -0.02 \end{bmatrix}$ Wihatsch et al. ²⁴ 4 93 5 90 6.3% $-0.01 \begin{bmatrix} -0.08, -0.01 \end{bmatrix}$ Samata et al. ²³ 5 91 15 95 6.4% $-0.01 \begin{bmatrix} -0.08, -0.02 \end{bmatrix}$ Samata et al. ²³ 5 91 15 95 6.4% $-0.01 \begin{bmatrix} -0.10, -0.02 \end{bmatrix}$ Subtoti (95% CI) 4531 104 456 104 $-0.02 \begin{bmatrix} -0.10, -0.02 \end{bmatrix}$ Decal effect test: $Z = 4.97 (p < 0.00001)$ 90 25 2 200 20.3% $-0.01 \begin{bmatrix} -0.15, 0.02 \end{bmatrix}$ Bin-Nun et al. ¹⁶ 3 72 8 73 5.0% $-0.07 [-0.15, 0.02]$	
Dani et al. 12 4 295 8 290 20.3% -0.01 -0.04 0.01 Lin et al. 16 2 180 10 187 12.7% -0.04 -0.08 -0.01 Manzoni et al. 17 1 39 3 41 2.8% -0.05 $[-0.14, 0.05]$ Manzoni et al. 17 1 39 3 41 2.8% -0.06 $[-0.0, 0.02]$ Minatoni et al. 12 0 151 10 168 11.0% -0.06 $[-0.10, 0.02]$ Minatoni et al. 12 4 93 5 90 6.3% -0.01 $[-0.08, 0.05]$ Soutoal (55% CI) 1431 15 95 6.4% -0.02 $[-0.06, -0.02]$ Subtoal (95% CI) 1431 1456 100.0% -0.04 $[-0.06, -0.02]$ Superal effect test: $Z = 4.97$ ($p < 0.00001$) $P^2 = 37\%$ Z^2 </td <td></td>	
Lin et al. ¹⁶ 2 180 10 187 12.7% -0.04 [-0.08 , -0.01] Lin et al. ²⁰ 9 222 18 221 15.4% -0.04 [-0.08 , 0.01] Manzoni et al. ²¹ 1 39 3 41 2.8% -0.05 [-0.14 , 0.05] Manzoni et al. ²¹ 0 151 10 168 11.0% -0.06 [-0.10 , -0.02] Manzoni et al. ²² 2 45 1 49 3.3% 0.02 [-0.05 , 0.10] Samanta et al. ²² 5 91 15 95 6.4% -0.02 [-0.12 , 0.07] Samanta et al. ²⁷ 17 121 20 121 8.4% -0.02 [-0.12 , 0.07] Subtotal (95% CI) 1431 10 1456 100.0% -0.04 [-0.06 , -0.02] Subtotal second refere test: Z = 4.97 ($o < 0.0001$] T 1436 -0.01 [-0.15 , 0.02] Sin-Nun et al. ¹⁵ 3 72 8 73 5.0% -0.07 [-0.15 , 0.02] Dari et al. ²⁶ 26 122 27 121 8.4% -0.01 [-0.01 , 0.02] Lin	
in et al. ²⁰ 9 222 18 221 15.4% -0.04 -0.09 0.00 Vanzoni et al. ²¹ 0 151 10 168 11.0% -0.06 $[-0.14, 0.05]$ Vanzoni et al. ²¹ 0 151 10 168 11.0% -0.06 $[-0.14, 0.05]$ Vanzoni et al. ²⁴ 4 93 5 90 6.3% -0.01 $[-0.08, 0.05]$ Samanta et al. ²³ 2 45 1 49 3.3% 0.02 $[-0.19, -0.02]$ Samanta et al. ²⁷ 17 121 20 121 8.4% -0.02 $[-0.12, 0.07]$ Subtotal (65% CI) 17 121 20 121 8.4% -0.02 $[-0.12, 0.07]$ Subtotal (65% CI) 1431 1456 100.0% -0.04 $[-0.08, -0.02]$ Oreal metal. ¹⁵ 3 72 8 73 5.0% -0.07 $[-0.11, 0.09]$ Sarga et al. ¹⁶ 3 72 8 73 5.0% -0.01 $[-0.12, 0.02]$ Jani et al. ¹⁶ 7 <th2< td=""><td>7</td></th2<>	7
Manzoni et al. ¹⁷ 1 39 3 41 2.8% -0.05 [-0.14 , 0.05] Manzoni et al. ²⁴ 0 151 10 168 11.0% -0.06 [-0.10 , -0.02] Monzoni et al. ²⁴ 2 45 1 49 3.3% -0.01 [-0.08 , 0.05] Samanta et al. ²² 5 91 15 95 6.4% -0.02 [-0.10 , -0.02] Samanta et al. ²⁷ 17 121 20 121 8.4% -0.02 [-0.10 , -0.02] Satist et al. ²⁷ 17 121 20 121 8.4% -0.02 [-0.10 , -0.02] Subtotal (65% CI) 1431 1456 100.0% -0.04 [-0.06 , -0.02] Overall effect test: $Z = 4.97$ ($p < 0.0001$) Y 37% 5.0% -0.07 [-0.15 , 0.02] Dreati effect test: $Z = 4.97$ ($p < 0.0001$) Y 277 121 8.4% -0.01 [-0.02 , 0.02] Dati et al. ¹⁶ 7 180 20 187 12.7% -0.07 [-0.12 , -0.02] Lin et al. ¹⁶ 7 222 13 221 15.4% -0.03 [-0.08 , 0.02]	-
Manzoni et al. ²¹ 0 151 10 168 11.0% -0.06 [-0.10 , -0.02] Mihatsch et al. ²⁴ 4 93 5 90 6.3% -0.01 [-0.08 , 0.05] Bouge et al. ²² 2 45 1 49 3.3% 0.02 [-0.05 , 0.10] Samata et al. ²⁷ 17 121 20 121 8.4% -0.02 [-0.12 , 0.07] Subtotal (95% C)) 1431 1456 100.0% -0.04 [-0.06 , -0.02] Subtotal (95% C)) 1431 1456 100.0% -0.04 [-0.06 , -0.02] Subtotal (95% C)) 131 104 104 104 Heterogeneity: Chi ² = 15.85, df = 10 (p = 0.10); i ² = 37% -0.07 [$-0.15, 0.02$] 3raga et al. ²⁶ 26 122 7 12 8.4% -0.01 [$-0.11, 0.09$] Jani et al. ¹⁶ 7 180 20 187 12.7% -0.07 [$-0.12, 0.02$] Jani et al. ¹⁶ 7 180 20 187 12.7% -0.07 [$-0.12, 0.02$] Jani et al. ¹⁶ 7 180 20 187 12.7% -0.07 [$-0.12, 0.02$]	
with at scheet al.244935906.3% -0.01 [-0.08 , 0.05]Souge et al.222451493.3% 0.02 [-0.05 , 0.10]Samanta et al.3359115956.4% -0.01 [-0.08 , 0.02]Samata et al.359115956.4% -0.02 [-0.12 , 0.07]Subtotal (95% CI)1218.4% -0.02 [-0.12 , 0.07]Subtotal (95% CI)14311456100.0% -0.04 [-0.06 , -0.02]Subtotal (95% CI)14311456100.0% -0.04 [-0.06 , -0.02]Subtotal (95% CI) -0.07 [-0.15 , 0.02]Subtotal (95% CI)10 ($p = 0.10$); $l^2 = 37\%$ 24.97 8.4% -0.01 [-0.02 , 0.00]Overall effect test: $Z = 4.97$ ($p < 0.000$) 25.2 290 20.3% -0.01 [-0.02 , 0.00]Subtotal (95% CI)26122 27 21 8.4% -0.01 [-0.02 , 0.00]Jani et al.163728 73 5.0% -0.07 [-0.15 , 0.02]Jani et al.1702952290 23.3% -0.01 [-0.02 , 0.00]Jani et al.18718020187 12.7% -0.07 [-0.12 , -0.02]Jani et al.2972221321 15.4% -0.03 [-0.07 , 0.01]Manzoni et al.29641 2.8% -0.02 [-0.03 , 0.07]Manzoni et al.299 6.3% 0.02 [-0.03 , 0.07]Jouge et al.29245449 <td></td>	
Rouge et al. ²² 2 45 1 49 3.3% 0.02 [-0.05, 0.10] Samanta et al. ²³ 5 91 15 95 6.4% -0.10 [-0.19, -0.02] Sari et al. ²⁷ 17 121 20 121 8.4% -0.02 [-0.12, 0.07] Subtotal (95% CI) 1431 1456 100.0% -0.04 [-0.06, -0.02] Total of envents 45 104 Heterogeneity: Chi ² = 15.85, df = 10 (p = 0.10); l ² = 37%	-
Samanta et al. ²³ 59115956.4% $-0.10 [-0.19, -0.02]$ Sam et al. ²⁷ 17121201218.4% $-0.02 [-0.12, 0.07]$ Subtotal (95% CI)14311456100.0% $-0.04 [-0.06, -0.02]$ Subtotal (95% CI)10 $p = 0.10$; $ ^2 = 37\%$ 104 Verall effect test: Z = 4.97 (p < 0.00001)V V V Directal for works372873 5.0% $-0.07 [-0.15, 0.02]$ Bray et al. ²⁶ 2612227121 8.4% $-0.01 [-0.11, 0.09]$ Jan et al. ¹⁶ 372873 5.0% $-0.07 [-0.15, 0.02]$ Dani et al. ¹⁶ 372873 5.0% $-0.07 [-0.17, 0.01]$ Jan et al. ¹⁹ 372873 5.0% $-0.07 [-0.17, 0.02]$ Jan et al. ¹⁹ 372873 5.0% $-0.07 [-0.15, 0.02]$ Jan et al. ¹⁹ 372873 5.0% $-0.07 [-0.15, 0.02]$ Jan et al. ¹⁹ 372873 5.0% $-0.07 [-0.15, 0.02]$ Jan et al. ¹⁹ 71802018712.7\% $-0.07 [-0.12, -0.02]$ Jan et al. ²⁰ 72221322115.4\% $-0.03 [-0.07, 0.01]$ Janzoni et al. ¹⁷ 5396412.8\% $-0.02 [-0.33, 0.07]$ Janzoni et al. ²¹ 4932906.3% $0.00 [-0.03, 0.07]$ Jan et al. ²² 2449<	- T
Sari et al. 2717121201218.4%-0.02 [-0.12, 0.07]Subtotal (95% CI)14311456100.0%-0.04 [-0.06, -0.02]Oreal effectogeneity: Chi ^p = 15.85, df = 10 (p = 0.10); l ² = 37%104Overall effect test: Z = 4.97 (p < 0.00001)VVOverall effect test: Z = 4.97 (p < 0.00001)VOverall effect test: Z = 4.97 (p < 0.00001)VOtati ef al. 163728Oan et al. 1718020187Oan et al. 2018712.7%-0.07 [-0.12, 0.02]In et al. 20722213221In et al. 20906.3%0.02 [-0.03, 0.07]Anzoni et al. 244932906.3%Anzoni et al. 244932906.3%Anzoni et al. 2449114956.4%-0.01 [-0.19, -0.02]Same et al. 2449114950.00 [-0.08, 0.08]Anzo	
Subtotal (95% CI) 1431 1456 100.0% -0.04 [-0.06 , -0.02] Otal of envents 45 104 Solution of envents 45 104 Ideterogeneity: Chi ² = 15.85, df = 10 (p = 0.10); l ² = 37% 0 9.37% Overall effect test: Z = 4.97 (p < 0.00001)	
total of envents 45 104 leterogeneity: Chi ² = 15.85, df = 10 (p = 0.10); l ² = 37% by-erall effect test: Z = 4.97 (p < 0.00001)	
Neterogeneity: Chi ² = 15.85, df = 10 (p = 0.10); l ² = 37% Verall effect test: Z = 4.97 (p < 0.00001)	•
werall effect test: $Z = 4.97$ (p < 0.00001)	
Sin-Nun et al.153728735.0% -0.07 [-0.15, 0.02]traga et al.2626122271218.4% -0.01 [-0.11, 0.09]vani et al.120295229020.3% -0.01 [-0.02, 0.00]in et al.1671802018712.7% -0.07 [-0.12, -0.02]in et al.2072221322115.4% -0.03 [-0.07, 0.01]fanzoni et al.175396412.8% -0.02 [-0.17, 0.01]fanzoni et al.2161511216811.0% -0.03 [-0.08, 0.02]fuihatsch et al.244932906.3%0.02 [-0.03, 0.07]fouge et al.222454493.3% -0.04 [-0.13, 0.06]aamanta et al.2349114956.4% -0.10 [-0.08, 0.08]aamanta et al.2714121141218.4%0.00 [-0.08, 0.08]aamanta et al.2714121141218.4%0.00 [-0.08, 0.08]aamanta et al.2714121141218.4%0.00 [-0.08, 0.08]aamanta et al.2714121141218.4%0.00 [-0.08, 0.08]aamanta et al.2778122122122122betord (95% CI)59122122122122betord et etcts $Z = 3.17$ (p = 0.007); 2 = 59%122122betord et etcts $Z = 3.17$ (p = 0.002); 2 = 59%290 <td></td>	
Braga et al. 2^{26} 26122271218.4% -0.01 [-0.11 , 0.09]Dani et al. 1^{2} 0295229020.3% -0.01 [-0.02 , 0.00]in et al. 1^{2} 71802018712.7% -0.07 [-0.12 , -0.02]in et al. 2^{30} 72221322115.4% -0.03 [-0.07 , 0.01]Aanzoni et al. 1^{17} 5396412.8% -0.02 [-0.17 , 0.01]Aanzoni et al. 2^{21} 61511216811.0% -0.03 [-0.08 , 0.02]Alihatsch et al. 2^{44} 4932906.3% 0.02 [-0.03 , 0.07]Rouge et al. 2^{22} 2454493.3% -0.04 [-0.13 , 0.06]Baranta et al. 2^{23} 49114956.4% -0.10 [$-0.19 - 0.02$]Baranta et al. 2^{23} 14121141218.4% 0.00 [-0.08 , 0.08]Bubtotal (95% CI)1431122145100.0% -0.03 [-0.05 , -0.01]Otal of events78122122122124Verrall effect test: Z = 3.17 (p = 0.002); $ ^2 = 59\%$ 122124Nortality due to ECNECNECNECNBin-Nun et al. 1^{15} 0723739.1% -0.04 [-0.09 , 0.01]Dani et al. 1^{24} 0295229036.6% -0.01 [-0.02 , 0.00]	
han i et al. 120295229020.3% -0.01 [-0.02 , 0.00]in et al. 16718020187 12.7% -0.07 [-0.12 , -0.02]in et al. 20722213221 15.4% -0.03 [-0.07 , 0.01]Anazoni et al. 17539641 2.8% -0.02 [-0.17 , 0.01]Anazoni et al. 21615112168 11.0% -0.03 [-0.08 , 0.02]Anazoni et al. 24493290 6.3% 0.02 [-0.03 , 0.07]Anazoni et al. 24493290 6.3% 0.02 [-0.03 , 0.07]Auge et al. 22245449 3.3% -0.04 [-0.13 , 0.06]Auge et al. 234911495 6.4% 0.00 [-0.08 , 0.08]Auge et al. 271412114121 8.4% 0.00 [-0.08 , 0.08]Auge et al. 271412114121 8.4% 0.00 [-0.08 , 0.08]Auge et al. 271412114121 8.4% 0.00 [-0.08 , 0.08]Auge et al. 271412114121 8.4% 0.00 [-0.05 , -0.01]Auge et al. 16781221221221241241456Auge et al. 1610 0.00% [-0.00%] 122 124124Auge et al. 160 72 3 73 9.1% -0.04 [-0.09 , 0.01]Auge et al. 160295	
in et al. ¹⁶ 7 180 20 187 12.7% -0.07 [-0.12 , -0.02] in et al. ²⁰ 7 222 13 221 15.4% -0.03 [-0.07 , 0.01] danzoni et al. ¹⁷ 5 39 6 41 2.8% -0.02 [-0.17 , 0.01] danzoni et al. ²¹ 6 151 12 168 11.0% -0.03 [-0.08 , 0.02] dihatsch et al. ²⁴ 4 93 2 90 6.3% 0.02 [-0.03 , 0.07] ouge et al. ²² 2 45 4 49 3.3% -0.04 [-0.13 , 0.06] tamanta et al. ²³ 4 91 14 95 6.4% -0.01 [$-0.19 - 0.02$] tari et al. ²⁷ 14 121 14 121 8.4% 0.00 [-0.08 , 0.08] ubtotal (95% CI) 1431 1456 100.0% -0.03 [-0.05 , -0.01] total of events 78 122 122 122 122 fortality due to ECN Introl total of events 73 9.1% -0.04 [-0.09 , 0.01] toari et al. ¹⁵ 0	
in et al. ²⁰ 7 222 13 221 15.4% -0.03 [-0.07 , 0.01] tanzoni et al. ¹⁷ 5 39 6 41 2.8% -0.02 [-0.17 , 0.01] tanzoni et al. ²¹ 6 151 12 168 11.0% -0.03 [-0.08 , 0.02] tihatsch et al. ²⁴ 4 93 2 90 6.3% 0.02 [-0.03 , 0.07] ouge et al. ²² 2 45 4 49 3.3% -0.04 [-0.13 , 0.06] amanta et al. ²³ 4 91 14 95 6.4% -0.10 [$-0.19 - 0.02$] ari et al. ²⁷ 14 121 14 121 8.4% 0.00 [-0.08 , 0.08] ubtotal (95% CI) 1431 1456 100.0% -0.03 [-0.05 , -0.01] otal of events 78 122 122 122 eterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59% 122 14 12 14 tortality due to ECN 100.0 72 3 73 9.1% -0.04 [-0.09 , 0.01] ani et al. ¹² 0 295 2 290	4
tanzoni et al. 17 5396412.8% -0.02 [-0.17 , 0.01]tanzoni et al. 21 61511216811.0% -0.03 [-0.08 , 0.02]tihatsch et al. 24 4932906.3% 0.02 [-0.03 , 0.07]ouge et al. 22 2454493.3% -0.04 [-0.13 , 0.06]amanta et al. 23 49114956.4% -0.10 [$-0.19 - 0.02$]ari et al. 27 14121141218.4% 0.00 [-0.08 , 0.08]ubtotal (95% CI)14311456100.0% -0.03 [-0.05 , -0.01]tat of events78122eterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59%verall effect test: Z = 3.17 (p = 0.002)Tortality due to ECNin-Nun et al. 15 0723739.1% -0.04 [-0.09 , 0.01]ani et al. 12 0295229036.6% -0.01 [-0.02 , 0.00]	
tanzoni et al. ²¹ 6 151 12 168 11.0% -0.03 [-0.08, 0.02] tihatsch et al. ²⁴ 4 93 2 90 6.3% 0.02 [-0.03, 0.07] ouge et al. ²² 2 45 4 49 3.3% -0.04 [-0.13, 0.06] amanta et al. ²³ 4 91 14 95 6.4% -0.10 [-0.08, 0.02] ari et al. ²⁷ 14 121 14 121 8.4% 0.00 [-0.08, 0.08] ubtotal (95% CI) 1431 121 1456 100.0% -0.03 [-0.05, -0.01] otal of events 78 122 122 122 122 teterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59% 122 122 122 teterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59% 122 124 124 in-Nun et al. ¹⁵ 0 72 3 73 9.1% -0.04 [-0.09, 0.01] ani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02, 0.00]	
lihatsch et al.244932906.3%0.02 [-0.03, 0.07]ouge et al.222454493.3%-0.04 [-0.13, 0.06]amanta et al.2349114956.4%-0.10 [-0.190.02]ari et al.2714121141218.4%0.00 [-0.08, 0.08]ubtotal (95% CI)14311456100.0%-0.03 [-0.05, -0.01]otal of events78122222eterogeneity: Chi2 = 24.38, df = 10 (p = 0.007); l2 = 59%122122122verall effect test: Z = 3.17 (p = 0.002)Increases739.1%-0.04 [-0.09, 0.01]ani et al.150723739.1%-0.04 [-0.09, 0.01]ani et al.120295229036.6%-0.01 [-0.02, 0.00]	
ouge et al. ²² 2 45 4 49 3.3% -0.04 [-0.13 , 0.06] amanta et al. ²³ 4 91 14 95 6.4% -0.10 [-0.19 - 0.02] ari et al. ²⁷ 14 121 14 121 8.4% 0.00 [-0.08 , 0.08] ubtotal (95% CI) 1431 1456 100.0% -0.03 [-0.05 , -0.01] otal of events 78 122 eterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59% verall effect test: Z = 3.17 (p = 0.002) -0.04 [-0.09 , 0.01] -0.04 [-0.09 , 0.01] In-Nun et al. ¹⁵ 0 72 3 73 9.1% -0.04 [-0.09 , 0.01] ani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02 , 0.00]	
amanta et al. 23 49114956.4% $-0.10 \begin{bmatrix} -0.19 - 0.02 \end{bmatrix}$ ari et al. 27 14121141218.4%0.00 $\begin{bmatrix} -0.08, 0.08 \end{bmatrix}$ ubtotal (95% Cl)14311456100.0% $-0.03 \begin{bmatrix} -0.05, -0.01 \end{bmatrix}$ otal of events78122eterogeneity: Chi² = 24.38, df = 10 (p = 0.007); l² = 59%122verall effect test: Z = 3.17 (p = 0.002)122Invariant test is 2 = 3.17 (p = 0.002)Invariant test is 3 = 3.12 (p = 0.002)Invariant test	- -
amanta et al. ²³ 4 91 14 95 6.4% -0.10 [-0.19 - -0.02] ari et al. ²⁷ 14 121 14 121 8.4% 0.00 [-0.08 , 0.08] ubtotal (95% CI) 1431 1456 100.0% -0.03 [-0.05 , -0.01] otal of events 78 122 122 verall effect test: Z = 3.17 ($p = 0.002$) $= 0.007$); $l^2 = 59\%$ $= 0.002$ Introduct to ECN in-Nun et al. ¹⁵ 0 72 3 73 9.1% -0.04 [-0.09 , 0.01] ani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02 , 0.00]	
ari et al. ²⁷ 14 121 14 121 8.4% 0.00 [-0.08, 0.08] ubtotal (95% CI) 1431 1456 100.0% -0.03 [-0.05, -0.01] otal of events 78 122 eterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59% verall effect test: Z = 3.17 (p = 0.002) Intrality due to ECN in-Nun et al. ¹⁵ 0 72 3 73 9.1% -0.04 [-0.09, 0.01] ani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02, 0.00]	
ubtotal (95% Cl) 1431 1456 100.0% -0.03 [-0.05 , -0.01] bala of events 78 122 eterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59% verall effect test: Z = 3.17 (p = 0.002) Intrastic due to ECN in-Nun et al. ¹⁵ 0 72 3 73 9.1% -0.04 [-0.09 , 0.01] ani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02 , 0.00]	
total of events 78 122 eterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59% verall effect test: Z = 3.17 (p = 0.002) Iortality due to ECN 72 3 73 9.1% -0.04 [-0.09 , 0.01] ani et al. ¹⁵ 0 72 3 73 9.1% -0.04 [-0.09 , 0.01]	♦
eterogeneity: Chi ² = 24.38, df = 10 (p = 0.007); l ² = 59% verall effect test: Z = 3.17 (p = 0.002) Iortality due to ECN in-Nun et al. ¹⁵ 0 72 3 73 9.1% -0.04 [-0.09 , 0.01] ani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02 , 0.00]	
in-Nun et al. ¹⁵ 0 72 3 73 9.1% -0.04 [-0.09, 0.01] ani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02, 0.00]	
iani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02, 0.00]	
iani et al. ¹² 0 295 2 290 36.6% -0.01 [-0.02, 0.00]	
	+
1.4% 3 93 1 90 $11.4%$ $0.02 [-0.02, 0.06]$	L.
a_1 i et al. ²⁷ 11 121 11 121 15.1% 0.00 [-0.07, 0.07]	_ <u>_</u>
ubtotal (95% Cl) 803 795 100.0% -0.00 [-0.02, 0.01]	1
	T
eterogeneity: $Chi^2 = 3.66$, df = 4 (p = 0.45); $l^2 = 0\%$	
eterogeneity: $Chi^2 = 15.85$, $df = 10$ (p = 0.10); $l^2 = 37\%$ verall effect test: Z = 4.97 (p < 0.00001)	
cidence of sepse	
in-Nun et al. ¹⁵ 31 72 24 73 5.0% -0.10 [-0.06, -0.26]	-+
raga et al. ²⁶ 40 122 42 121 8.4% -0.02 [-0.14, 0.10]	
ani et al. ¹² 14 295 12 290 20.1% -0.01 [-0.03, 0.04]	-=+
in et al. ¹⁶ 22 180 36 187 12.6% -0.07 [-0.14, -0.00]	- - -
in et al. ²⁰ 25 222 28 221 15.2% -0.01 [-0.07, 0.05]	— • +
anzoni et al. ¹⁷ 19 39 22 41 2.8% -0.05 [-0.27, 0.17] —	
lanzoni et al. ²¹ 7 151 29 168 10.9% -0.13 [-0.19, -0.06]	
lihatsch et al. ²⁴ 30 93 30 90 6.3% -0.01 [-0.15, 0.13]	
lillar MR. ¹¹ 0 10 0 10 0.7% –0.00 [–0.17, 0.17]	
ouge et al. ²² 15 45 13 49 3.2% 0.07 [-0.12, 0.25]	_
manta tal^{23} 13 91 28 95 6.4% -0.15 [-0.27, -0.04] -	
10^{-10} 10^{-10} 12^{-10}	_
ubtotal (95% Cl) 1441 1466 100.0% -0.03 [-0.05, -0.00]	•
otal of envents 256 104	•
leterogeneity: Chi ² = 23.10, df = 11 (p = 0.02); $l^2 = 52\%$	
Overall effect test: $Z = 1.96 (p < 0.05)$	

-0.2 -0.1 0 0.1 0.2 Probiotics Placebo

Figure 1 Meta-analysis analyzing the efficacy of probiotics in preterm neonates. 95% CI, 95% confidence interval; df, degrees of freedom; ECN, necrotizing enterocolitis; F, female; I², heterogeneity test; M, male.

Table 2	Power (1-b) established in primary studies.	

Study	NEC	Overall mortality	Mortality due to NEC	Sepsis
Millar et al. ¹¹	*	*	*	NA
Dani et al.12	40.9%	40.6%	40.6%	8.3%
Bin-Nun et al. ¹⁵	85.0%	35.7%	40.2%	23.5%
Lin et al. ¹⁶	60.8%	71.9%	*	45.6%
Manzoni et al.17	12.5%	3.9%	*	6.2%
Lin et al. ²⁰	42.6%	33.1%	1.1%	9.4%
Manzoni et al. ²¹	86.8%	21.3%	*	92.6%
Rouge et al. ²²	12.1%	12.4%	*	9.1%
Samanta et al.23	68.5%	72.4%	*	70.3%
Mihatsch et al. ²⁴	8.9%	12.0%	15.9%	2.6%
Braga et al. ²⁶	48.7%	3.1%	*	4.7%
Sari et al.27	9.3%	1.0%	1.1%	7.0%

NA, not applicable; NEC, necrotizing enterocolitis.

*Outcome not assessed.

presenting a shorter time until oral feeding reintroduction and shorter hospitalization stay. Although the numbers needed to treat in relation to NEC prophylaxis (NNT = 25) and mortality (NNT = 34) are relatively high, these can be counterbalanced by the high incidence of premature births, especially in countries with socioeconomic and cultural problems, and also by the easy handling and low costs related to probiotics. Considering the extremely fragile patients, susceptible to infections, complications and comorbidities, it is believed that these supplements, when available, deserve more attention.

Based on the available data, it can be inferred that probiotics are another useful tool in pediatric clinical practice. However, further studies are needed to assess the best preparation methods and doses, as well as the types of probiotics to be used.

Some reviews on the subject have been published in recent years, and similarly to the present study, showed the benefits of probiotic supplementation.³⁴⁻³⁶ Small differences regarding methodological issues are found among these publications; for instance, regarding the search strategy and databases used, gestational age (27-37 weeks), and weight of the newborn. Nonetheless, there was a decrease in the incidence of NEC in all analyses. Wang et al.,³⁶ in the last review published on the subject, were the first to attempt to stratify the data regarding the species of probiotics. Both Lactobacillus and Bifidobacteria were found to be effective.

Some authors consider the available evidence as sufficient for the adoption of this type of therapy into routine practice, and claim that new studies on the subject are unnecessary and also unethical. Others are more cautious and claim that the studies have methodological flaws, that the safety of probiotics in relation to the invasion of microorganisms in the intestinal mucosa is not fully established, and that the methods of preparation are very heterogeneous.37

Four clinical trials registered with ClinicalTrials.gov including approximately 1,500 patients are under progress; in the future, they must be included in a data update, and may thus elucidate the benefits obtained so far.

Moreover, it should be clarified that only two selected studies had sufficient power to confirm the results.

Conclusion

The synthesis of evidence shows that supplementation with probiotics reduces the incidence of severe NEC in premature infants.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

- 1. Brook I. Microbiology and management of neonatal necrotizing enterocolitis. Am J Perinatol. 2008;25:111-8.
- 2. Reynolds RM, Thureen PJ. Special circumstances: trophic feeds, necrotizing enterocolitis and bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2007;12:64-70.
- 3. de Oliveira ND, Miyoshi MH. Avanços em enterocolite necrosante. J Pediatr (Rio J). 2005;81:S16-S22.
- 4. Kullen MJ, Bettler J. The delivery of probiotics and prebiotics to infants. Curr Pharm Des. 2005;11:55-74.
- 5. Stenger MR, Reber KM, Giannone PJ, Nankervis CA. Probiotics and prebiotics for the prevention of necrotizing enterocolitis. Curr Infect Dis Rep. 2011;13:13-20.
- 6. Arciero JC, Ermentrout GB, Upperman JS, Vodovotz Y, Rubin JE. Using a mathematical model to analyze the role of probiotics and inflammation in necrotizing enterocolitis. PLoS One. 2010;5:e10066.
- 7. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187:1-7.
- 8. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:1-12.

- 9. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. Lancet. 2001;357:1191-4.
- Reuman PD, Duckworth DH, Smith KL, Kagan R, Bucciarelli RL, Ayoub EM. Lack of effect of Lactobacillus on gastrointestinal bacterial colonization in premature infants. Pediatr Infect Dis. 1986;5:663-8.
- Millar MR, Bacon C, Smith SL, Walker V, Hall MA. Enteral feeding of premature infants with Lactobacillus GG. Arch Dis Child. 1993;69:483-7.
- 12. Dani C, Biadaioli R, Bertini G, Martelli E, Rubaltelli FF. Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. Biol Neonate. 2002;82:103-8.
- Costalos C, Skouteri V, Gounaris A, Sevastiadou S, Triandafilidou A, Ekonomidou C, et al. Enteral feeding of premature infants with Saccharomyces boulardii. Early Hum Dev. 2003;74:89-96.
- Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y. Effects of bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr Int. 2004;46:509-15.
- Bin-Nun A, Bromiker R, Wilschanski M, Kaplan M, Rudensky B, Caplan M, et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr. 2005;147:192-6.
- 16. Lin HC, Su BH, Chen AC, Lin TW, Tsai CH, Yeh TF, et al. Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics. 2005;115:1-4.
- Manzoni P, Mostert M, Leonessa ML, Priolo C, Farina D, Monetti C, et al. Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm neonates: a randomized study. Clin Infect Dis. 2006;42:1735-42.
- Mohan R, Koebnick C, Schildt J, Schmidt S, Mueller M, Possner M, et al. Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study. J Clin Microbiol. 2006;44:4025-31.
- Stratiki Z, Costalos C, Sevastiadou S, Kastanidou O, Skouroliakou M, Giakoumatou A, et al. The effect of a bifidobacter supplemented bovine milk on intestinal permeability of preterm infants. Early Hum Dev. 2007;83:575-9.
- 20. Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI, et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics. 2008;122:693-700.
- Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA. 2009;302:1421-8.
- 22. Rougé C, Piloquet H, Butel MJ, Berger B, Rochat F, Ferraris L, et al. Oral supplementation with probiotics in very-low-birthweight preterm infants: a randomized, double-blind, placebocontrolled trial. Am J Clin Nutr. 2009;89:1828-35.
- 23. Samanta M, Sarkar M, Ghosh P, Ghosh J, Sinha M, Chatterjee S. Prophylactic probiotics for prevention of necrotizing ente-

rocolitis in very low birth weight newborns. J Trop Pediatr. 2009;55:128-31.

- 24. Mihatsch WA, Vossbeck S, Eikmanns B, Hoegel J, Pohlandt F. Effect of Bifidobacterium lactis on the incidence of nosocomial infections in very-low-birth-weight infants: a randomized controlled trial. Neonatology. 2010;98:156-63.
- 25. Awad H, Mokhtar H, Imam SS, Gad GI, Hafez H, Aboushady N. Comparison between killed and living probiotic usage versus placebo for the prevention of necrotizing enterocolitis and sepsis in neonates. Pak J Biol Sci. 2010;13:253-62.
- 26. Braga TD, da Silva GA, de Lira PI, de Carvalho Lima M. Efficacy of Bifidobacterium breve and Lactobacillus casei oral supplementation on necrotizing enterocolitis in very-low-birthweight preterm infants: a double-blind, randomized, controlled trial. Am J Clin Nutr. 2011;93:81-6.
- 27. Sari FN, Dizdar EA, Oguz S, Erdeve O, Uras N, Dilmen U. Oral probiotics: Lactobacillus sporogenes for prevention of necrotizing enterocolitis in very low-birth weight infants: a randomized, controlled trial. Eur J Clin Nutr. 2011;65:434-9.
- Kitajima H, Sumida Y, Tanaka R, Yuki N, Takayama H, Fujimura M. Early administration of Bifidobacterium breve to preterm infants: randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 1997;76:F101-7.
- Underwood MA, Salzman NH, Bennett SH, Barman M, Mills DA, Marcobal A, et al. A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal shortchain fatty acids. J Pediatr Gastroenterol Nutr. 2009;48: 216-25.
- Ke D, Su Z, Li L. Control study on preventing necrotizing enterocolitis in 438 premature infants by using Bifico. Chin Pediatr Emerg Med. 2008;15:69-71.
- Huang B, Yang H, Huang X. Prevention and cure effect of micro ecosystem praeparatum on necrotizing enter ocolitis of very low birth weight infant. J Guangdong Med Coll. 2009;27:37-9.
- Di M, Li X. Effects of Bifidobacterium supplementation for prevention of necrotizing enterocolitis in preterm infants: a randomized, controlled trial. Zhong Guo She Qu Yi Shi. 2010; 231:69.
- 33. Ren B. Preventive effect of Bifidobacterium tetravaccine tablets in premature infants with necrotizing enterocolitis. J Pediatr Pharm. 2010;16:24-5.
- Alfaleh K, Anabrees J, Bassler D, Al-Kharfi T. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2011;(3):CD005496.
- 35. Deshpande G, Rao S, Patole S, Bulsara M. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics. 2010;125:921-30.
- 36. Wang Q, Dong J, Zhu Y. Probiotic supplement reduces risk of necrotizing enterocolitis and mortality in preterm very lowbirth-weight infants: an updated meta-analysis of 20 randomized, controlled trials. J Pediatr Surg. 2012;47:241-8.
- Young L, Morgan J, McGuire W. Preventing necrotizing enterocolitis in very low birth weight infants: current evidence. Paediatrics and Child Health. 2011;21:258-64.