ARTICLE IN PRESS

Jornal de Pediatria xxxx;xxx(xxx): 101478

Jornal de Pediatria

www.jped.com.br

REVIEW ARTICLE

Warning signs for identifying neurodevelopmental disorders: a systematic literature review

Q1 Liubiana Arantes de Araújo (Da,b,*

Received 6 October 2025; accepted 20 October 2025 Available online xxx

KEYWORDS

Developmental disorder; Early signs; Cerebral palsy; Autism spectrum disorder

Abstract

Objective: To synthesize the most consistent warning signs ("red flags") for NDDs: autism spectrum disorder, cerebral palsy, intellectual disability, language development disorder, coordination developmental disorder, attention deficit hyperactivity disorder, and global developmental delay. *Data source:* Review in PubMed/Medline, Cochrane Library, SciELO, CAPES, and BVS, 2003-2025. Methodological quality was assessed with NOS, CASP, and AMSTAR.

Data summary: 54 studies were included. The most consistent early signs were grouped by NPMD domains: Motor: delay to sit ≥ 9 m, absence of independent walking 18 m, absence of pincer grasp 10 m, and asymmetrical motor patterns 12 m; Language: absence of babbling at 9–12 m, lack of words until 15–18 m, and absence of two-word combination 24 m; Social: absence of social smile, poor eye contact, deficits in shared attention and communicative gestures; Cognitive and behavioral: regression of skills, repetitive behaviors, absence of symbolic play, and irritability or inattention; Others: atypical sensory responses, sleep disturbances, and feeding difficulties. Instruments such as M-CHAT-R/F, ASQ, Bayley, and HINE increased the accuracy of screening and reduced referral delays.

Conclusion: Early recognition of warning signs for NPMD disorder associated with complementary examinations and formal assessment should be integrated into routine pediatric care. © 2025 Published by Elsevier España, S.L.U. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 Introduction

- 2 Neurodevelopmental Disorders (NDDs) constitute a heteroge-
- neous group of early-onset conditions characterized by defi-
- 4 cits in the development of cognitive, motor, linguistic, socio-
- emotional, and adaptive functions, which interfere with

* Corresponding Author. E-mail: liubianaa@hotmail.com individual functioning and social participation. These conditions result from alterations in the maturation process of the 7 central nervous system and generally manifest in the first 8 years of life, during critical periods of skill acquisition [1]. 9

The diagnosis of NDDs is essentially clinical, carried out 10 through direct observation of the child, interviews with 11 parents or caregivers, and the application of standardized 12 and validated instruments for screening and assessment. 13 The internationally recognized diagnostic criteria are 14

https://doi.org/10.1016/j.jped.2025.101478

0021-7557/© 2025 Published by Elsevier España, S.L.U. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Please cite this article in press as: L.A. Araújo, Warning signs for identifying neurodevelopmental disorders: a systematic literature review, Jornal de Pediatria (2025), https://doi.org/10.1016/j.jped.2025.101478

a Universidade Federal de Minas Gerais, Pós-graduação em Transtorno do Espectro do Autismo, Belo Horizonte, MG, Brazil

^b Instituto de Neurodesenvolvimento BoraBrincar, Belo Horizonte, MG, Brazil

described in the International Classification of Diseases - 11th ed. (ICD-11) [2], published by the World Health Organization (WHO), as well as in the Diagnostic and Statistical Manual of Mental Disorders - DSM-5-TR [3], which provide operational descriptions for each disorder, such as autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), communication and learning disorders, among others [2].

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71 72

73

74

75

76

Advances in neuroscience have shown that early intervention in children with developmental delays is crucial for reducing long-term impairments. The infant brain exhibits high neuroplasticity and many windows of opportunity, critical periods in which specific neural circuits are more sensitive to environmental experiences and interventions, especially in the first years of life, meaning that neural connections can be strengthened or remodeled according to the received stimuli [4].

During early childhood, there are well-established windows for the development of language, vision, motor functions, and socio-emotional skills. Studies in neuroimaging and neurophysiology show that, during these periods, the brain undergoes intense formation of new connections, synaptic pruning, and myelination, processes that refine neural networks, making them more efficient [4]. When there is adequate stimulation, these circuits consolidate and define the learning of a particular skill; when there is a delay without intervention, damage can occur that is later difficult to reverse.

In this context, the childcare visit should be understood as a privileged space not only for monitoring physical growth, but also for the systematic assessment of neuropsychomotor development (NPMD). It is during these meetings that subtle signs should be detected, including delays in developmental milestones or even regressions - situations that require immediate attention from the professional who monitors the child.

It is important to emphasize that the identification of risk factors or early signs should lead to immediate intervention, even if a definitive diagnosis has not yet been made. Neuroscience shows that initiating interventions soon after exposure to a risk factor or after detecting any delay is to take advantage of periods of greater response due to neuroplasticity and windows of opportunity, and significantly increases the chances of functional gains [4].

In Brazil, Law N. 13,438/2017 establishes the mandatory formal assessment of child development in childcare visits within the Unified Health System (SUS). This must be done through the careful completion of the NPMD milestones section in the Child Health Booklet. In addition, the Brazilian Society of Pediatrics (SBP) recommends that all pediatricians apply the M-CHAT (Modified Checklist for Autism in Toddlers) at 18 and 24month visits, favoring the early detection of warning signs for ASD [5,6].

In short, the responsibility for identifying risk factors, delays, or regressions lies with the person caring for the child. Given the importance of this topic, this study was designed to highlight the main warning signs for NDDs. It is the responsibility of pediatricians and other healthcare professionals to act vigilantly, initiating the intervention immediately, thus maximizing the possibility of transforming developmental trajectories.

Methodology

A literature review was conducted aiming to identify warn- 78 ing signs for Neurodevelopmental Disorders (NDDs). Systematic and non-systematic reviews, quantitative, qualitative, and mixed-methods studies published in the BVS Portal (Virtual Health Library), SciELO (Scientific Electronic Library Online), Cochrane Library, CAPES Journals, and PubMed/ Medline were included, in addition to secondary references extracted from the selected articles.

77

82

83

84

85

86

87

88

89

93

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

114

115

116

121

122

123

130

131

132

The formulation of the research question followed the PICO model (Patient, Intervention, Comparison, Outcome), structured as follows: Guiding question: "What are the warning signs for identifying Neurodevelopmental Disorders?"

The DeCS descriptors were applied to search strategies in 90 the BVS and SciELO portals, while the MeSH descriptors were 91 used to construct the strategy applied in PubMed/Medline 92 according to the following combinations:

- "Neurodevelopmental Disorders" AND "Early Diagnosis" OR 94 "Early Signs" OR "Red Flags"
- "Cerebral Palsy" AND "Early Signs" OR "Red Flags"
- "ADHD" AND "Early Signs" OR "Red Flags"
- "Developmental Coordination Disorder" AND "Early Signs" OR "Red Flags'
- "Global Developmental Delay" AND "Early Signs" OR "Red Flags"
- "Intellectual Disability" AND "Early Signs" OR "Red Flags"
- "Speech and Language Delay" AND "Early Signs" OR "Red
- "Autism Spectrum Disorder" AND "Early Signs" OR "Red Flags"

The selected studies followed Flowchart 1 depicted in Figure 1.

The narrative synthesis was organized by clinical condition, aiming to facilitate the identification of the main early markers described in the literature for each NDD. Of the total, 20 studies were evaluated with validated methodological analysis instruments: 6 systematic 113 reviews by AMSTAR 2, 9 observational studies by CASP, and 5 cohort or case-control studies by the Newcastle-Ottawa Scale (NOS).

Results 117

Fifty-nine articles published in Portuguese, English, and 118 Spanish, published between 1990-2025, involving humans and children up to 6 years of age, were included. Inclusion criteria were studies focusing on the description of warning signs for one of the studied NDDs, and exclusion criteria were case reports and case series.

The main focus of these studies was the evaluation of warning signs for GDD, CP, and ASD, in which the largest 125 body of available scientific evidence is concentrated. In a complementary and less detailed manner, signs for attention deficit hyperactivity disorder (ADHD), intellectual disability (ID), developmental language disorder (DLD), and developmental coordination disorder (DCD) were described, recognizing their importance for clinical practice and pediatric surveillance (Table 1).

Jornal de Pediatria xxxx;xxx(xxx): 101478

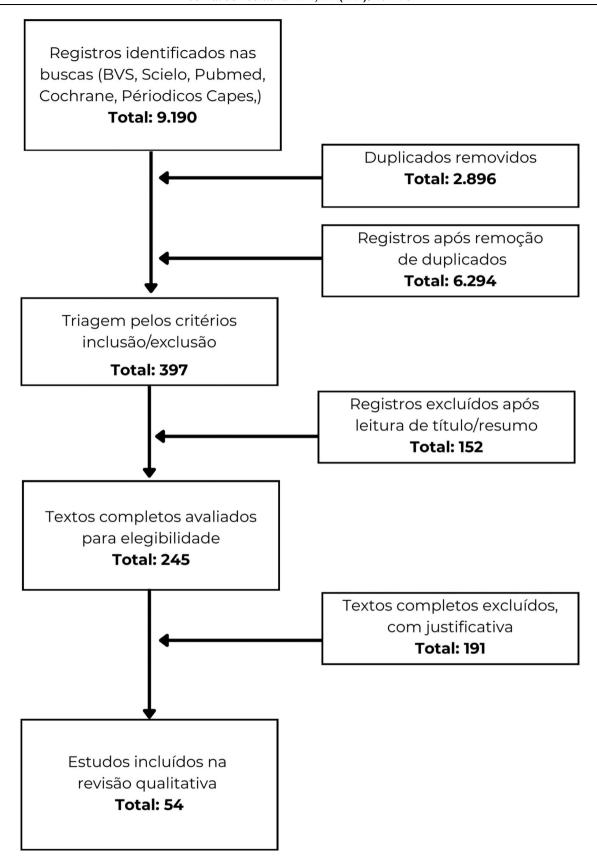


Figure 1 Flow chart. Registros identificados nas buscas (BVS, Scielo, Pubmed, Cochrane, Periódicos Capes,) Total: 9.190** = Records identified through searches (BVS, Scielo, PubMed, Cochrane, Capes Journals,) Total: 9,190. Duplicados removidos Total: 2.896 = Duplicates removed Total: 2,896. Registros após remoção de duplicados Total: 6.294 = Records after removal of duplicates Total: 6,294. Triagem pelos critérios inclusão/exclusão Total: 397 = Screening based on inclusion/exclusion criteria Total: 397. Registros excluídos

Global Developmental Disorder (GDD)

134

135

136

137

138

139

140

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174 175

176

177

178

179

180

181

182

183

184

185

Global developmental disorder (GDD) is a heterogeneous condition characterized by significant delays in multiple domains cognitive, linguistic, motor, and social. Children with GDD often show early signs that can be observed in pediatric consultations: absence of social smile by 3 months, inability to hold their head up by 4 months, inability to sit without support by 9 months, absence of babbling by 12 months, inability to walk independently by 18 months, or absence of meaningful words after 24 months. Population studies estimate a prevalence of 1-3% for global delays and up to 10-15% when considering delays in preschoolers [7-9]. Early detection is crucial, as interventions carried out in the first years take advantage of critical periods of brain plasticity. However, barriers to recognition persist, such as the low sensitivity of professionals who do not use validated instruments and the difficulty parents have in recognizing subtle delays [10]. It is worth highlighting that the COVID-19 pandemic increased exposure to risk factors, with a negative impact on children's development, and that maternal depression is an isolated risk factor for GDD [11].

A study conducted in primary care centers in Turkey demonstrated a prevalence of GDD of 6.4% among children aged 3 to 60 months, with the main signs being delayed crawling, walking difficulties, absence of simple phrases after 2 years, and poor social interaction. Significant associations were identified with advanced maternal age, low parental educational level, unfavorable socioeconomic conditions, and consanguineous marriages [11].

Complementarily, other authors have listed additional risk factors, such as poor maternal health during pregnancy, perinatal complications, infections, genetic predisposition, exposure to toxins, trauma, neglect, maltreatment, low socioeconomic status, family history of speech delay, male sex, and perinatal factors [12,13].

Relevant warning signs for NDD include:

- Motor and Language: delay in sitting, crawling, walking, or talking, compared to typical developmental milestones.
- Social Interaction: little eye contact, absence of social smile, difficulty sharing attention, limited imitation, low engagement.
- Repetitive Behaviors: intense and decontextualized repetitive hand or body movements, unusual use of objects, insistence on rigid routines.
- Play: poor functional, symbolic, and imaginative play; difficulty exploring toys in a varied way.
 - Sensory, Attention, and Temperament: atypical responses to sensory stimuli (hypo/hypersensitivity), attention difficulties, and emotional regulation problems.
 - Sleep and Feeding: persistent sleep problems or recurrent feeding difficulties.

The literature describes that the use of validated instruments, such as scales to assess different domains, increases early detection. The Ages and Stages Questionnaire (ASQ)

identified children with motor delays and deficits in receptive 187 and expressive language, and questionnaires applied to parents may have good acceptability (75–81% completeness) [14]. The Child Development Inventory (CDI) was more specific for the absence of phrases, difficulties in solving simple problems, and fine motor coordination deficits. The Parents' Evaluation of Developmental Status (PEDS) highlighted recurring parental concerns, such as poor eye contact, attention difficulties, and repetitive behaviors [12].

190

191

192

193

194

195

196

197

204

211

212

217

224

225

234

235

236

241

242

The Bayley scale describes the following signs related to TND: absence of significant babbling at 12 months (expressive language); difficulties in verbal comprehension at 18 months (receptive language); not walking independently by 199 18 months (gross motor skills); persistent problems with pincer grasp or fine motor coordination after 12-15 months (fine 201 motor skills); low engagement in simple cognitive problemsolving tasks after 18-24 months (cognitive) [15]. In Iran, the concurrent validity of the Bayley Screening Test version was evaluated in comparison to the full Bayley-III in 204 children aged 1 to 42 months. Strong correlations were found in all domains (r > 0.884), high specificity (87.8% to 100%), and higher sensitivity in receptive language (81.4%) and lower sensitivity in gross motor skills (58.1%), indicating that the screening version is useful but requires caution in detecting subtle motor delays [16]. In Suriname, a study analyzed the motor subtests of the Bayley-III in children aged 3 to 36 months, and the findings showed that such references did 213 not adequately reflect local performance, with overestimation and underestimation of motor development. This result 215 reinforces the need for cultural and regional validation [17].

In addition to technical limitations, caregivers' perception also interferes with early identification. Although almost 80% of parents expressed interest in screening, only 2.6% were aware of the availability of these services and signs such as lack of imitation, difficulties in pretend play, and atypical language use [18]. This means that warning signs such as persistent hypotonia, regression of acquired skills, absence of communicative gestures at 12 months, or unsteady gait may go unnoticed [18].

A study in Pakistan with 390 parents of children aged 226 0-5 years showed low knowledge about developmental 227 milestones: 59% in gross motor skills, 54% in fine motor 228 skills, 56% in the social domain, and 42% in language. Only 29% reported receiving adequate information from pediatricians, although 60% considered the delay a cause for concern. In case of suspicion, 55% would seek a general pediatrician, and a few specialists. Urban parents 233 and parents from nuclear families demonstrated greater knowledge, reinforcing the need to expand parental education and the pediatricians' engagement [19].

Hence, the discussion about structured programs increasing early referral rates (RR 1.95 in groups with office support and 1.71 in groups without support), in addition to reducing the time to intervention by up to 70% [20]. In the United States, a study demonstrated that early intervention led to significant gains in cognition, behavior, and language, including expanded vocabulary, better articulation, social advances, and a

após leitura de título/resumo Total: 152 = Records excluded after title/abstract reading Total: 152. Textos completos avaliados para elegibilidade Total: 245 = Full-text articles assessed for eligibility Total: 245. Textos completos excluídos, com justificativa Total: 191 = Full-text articles excluded, with justification Total: 191. Estudos incluídos na revisão qualitativa Total: 54 = Studies included in qualitative review Total: 54.

 Table 1
 Evaluation of the included studies according to AMSTAR 2, CASP and NOS.

Reference	Type of study	Strong points	Limitations	Evaluation	
Law J et al., 2003 [52]	Cochrane systematic review with pre-registered protocol.	Rigorous quality assessment (Cochrane Risk of Bias). Quantitative meta-analysis with hetero- geneity analysis.	Probable restriction to articles in English. Does not detail search in grey literature.	HIGH AMSTAR	
Nelson et al., 2006 [13]	Systematic review	Structured search; clear outcomes	Did not assess bias in all cases; no meta- analysis; little grey literature.	MODERATE AMSTAR	
Warren et al., 2016 [18]	Systematic review (screening 1–4 years)	Protocol (PROSPERO CRD42014009809). Extensive search (MEDLINE, Embase, PsycINFO). Quality assessment. Critical discussion of the limitations.	Two heterogeneous studies were included. Language restriction (English/French). No detailed exclusion list. Publication bias not formally assessed.	HIGH-MODERATE AMSTAR	
Peacock-Chambers et al., 2017[20]	Systematic review	Systematic approach and clear categorization of interventions. Recognition of methodological limitations and heterogeneity. Conclusions based on consistent primary care evidence.	No PROSPERO; Limited search (only PubMed and PsycINFO; no grey literature). Lack of confirmation of duplicate selection/extraction. Publication bias not formally assessed.	MODERATE-HIGH AMSTAR	
Gomes et al., 2015 [50]	Systematic review	Broad search without language restrictions. Quality assessment (CASP and AMSTAR). Critical discussion of methodological limitations. Relevant contextualization about Brazilian families.	No protocol registered. Selection/extraction not described in duplicate. Exclusion list incomplete. Publication bias not assessed.	MODERATE AMSTAR	
Morgan et al., 2021 [24]	Systematic review	Extensive search across 6 databases (CINAHL, Cochrane, Embase, MEDLINE, PsycINFO, Scopus). Quality assessment (AMSTAR/Cochrane RoB). Conditional recommendations based on the strength of evidence.	May not include grey literature. Not all exclusions listed. Publication bias not formally investigated.	HIGH-MODERATE AMSTAR	
Sheldrick et al., 2011[10]		Use of quality criteria (QUADAS). Description of the characteristics of the studies. Critical discussion of limitations and heterogeneity.	Single database search (Medline). No pre-registration protocol. No explicit double selection. No publication bias analysis.	MODERATE AMSTAR	
Araújo et al., 2021 [9]	SYSTEMATIC REVIEW	Selection in duplicate. Good description of the included studies. Quality assessment (CASP and AMSTAR 2). Critical use of evidence and recognition of limitations.	Lack of publicly registered protocol. Potentially less comprehensive search. Non-transparent exclusion list. Unassessed publication bias.	MODERATE-HIGH AMSTAR	

Reference	Type of study	Strong points	Limitations	Evaluation
Maulik et al. 2011 [47]	Meta-analysis	Extensive database (52 studies). Detailed description of samples and	Absence of a registered protocol. Little detailed quality assessment of	MODERATE AMSTAR
[47]		global variations.	studies.	
		Use of random-effects model and sub-	Probable language/publication restric-	
		group analysis.	tion. Publication bias not assessed.	
Demirci & Kartal, 2016[11]	Cross-sectional (prev- alence)	Adequate sample; valid instruments	Selection bias; poorly adjusted confounders	Moderate CASP
Kumar et al., 2024 [19]	Cross-sectional (KAP parents)	Clear question; useful educational poli- cies.	Selection bias; social desirability	Moderate/Low CASP
Barron-Garza et	Prospective cohort	Good follow-up; neuroimaging + clinical	Partially adjusted confounders	Good CASP
al., 2023[31]	Prospective condit	examination.	Fai tiatty adjusted comodinaers	GOOG CASE
Jain et al., 2024	Diagnostic/prognostic	Multicenter; clinical gold standard	Poorly described blindness	Good CASP
[32] Romeo et al., 2013	cohort NICU Cohort	Standardized neurological examination	Referral bias; limited control	Moderate CASP
[28]				
Gammer et al.,	Prospective Cohort	Standardized protocols; adequate follow-	Sample restricted to at-risk siblings	Good CASP
2015[36]	(ASD)	up.		
Ozonoff et al., 2011[39]	Multicenter cohort (ASD)	Robust sample; standardized protocols	Restricted generalization	High CASP
Elsabbagh et al.,	Prospective cohort	Objective biomarker; diagnostic	Small sample size; limited spectrum	Good CASP
2012[43]		confirmation		
Aragão et al., 2017	Cohort (Congenital	Well-defined cases; reliable neuroimag-	No control group; poor adjustment for	Moderate NOS
[29]	Zika)	ing.	confounders.	
Jones & Klin, 2013	Prospective cohort	Robust cohort; paired controls; adequate	Limited adjustments of confounders	High NOS
[42]	(eye-tracking)	follow-up		

reduction in repetitive behaviors [20]. However, without validated instruments, the detection capacity of pediatricians is low, with sensitivity ranging from 0.14–0.54 [19].

In 2024, a team assessed whether there were changes in the average percentiles of child development over four decades, comparing data from 2,065 children between 0 and 36 months (1970s and 2018) and concluded stability of the milestones. However, the authors highlighted the importance of periodic reassessments of the scales [21].

Cerebral palsy 253

246

247

248

249 250

254

255

256 257

258

259 260

261

262

263

264

265

266

267

268

270

271

272

273

274

275

278

279

280

281

Cerebral palsy is a group of permanent, but non-progressive, disorders of movement and posture development that cause limitations in motor activities, attributed to non-progressive changes in the developing brain, usually during the prenatal, perinatal period, or in the first years of postnatal life. It results from static brain injury that compromises structures related to motor control, such as the motor cortex, basal ganglia, cerebellum and their associated pathways. Clinical manifestations may include spasticity, dyskinesia (dystonia and choreoathetosis), ataxia, and are frequently accompanied by comorbidities such as intellectual disability, epilepsy, sensory disorders (visual and auditory), communication difficulties, gastrointestinal disorders and musculoskeletal alterations [22,23].

The diagnosis becomes more robust when combining a highrisk clinical history, structured neurological examination, assessment of spontaneous movements, and neuroimaging, rather than relying solely on motor delays observed late [22,24].

In the clinical examination, some neurological findings are particularly relevant, as described in Table 2.

Morgan et al. published a study used as a reference by the AAP in 2024; the data emphasize the importance of very early identification of CP, especially in high-risk newborns, such as extremely premature infants, those with hypoxicischemic encephalopathy, and those with perinatal strokes [24]. The authors emphasize that when using standardized, highly accurate tools such as the General Movements Assessment (GMA) and the Hammersmith Infant Neurological Examination (HINE), it is already possible to reach a

diagnosis or at least classify the child as "high risk for CP" at 282 around 3 months of corrected age, achieving sensitivity and specificity greater than 90% [22].

284

286

292

293

300

301

302

303

305

306

307

308

322

The GMA observes the quality of the baby's spontaneous 285 movements through short videos (3-5 minutes) in calm wakefulness. It has high predictive value by identifying crampedsynchronized patterns in the first weeks or the absence of fidgety movements between 9 and 20 weeks post-term, considered one of the most sensitive and specific predictors for CP. It is a non-invasive, low-cost examination applicable in different contexts, although it depends on training and standardization of the recording.

The HINE, in turn, is a structured clinical examination 294 applied between 2 and 24 months of age, which assesses cranial nerves, posture, tone, voluntary movements, postural 296 reactions, primitive reflexes, and behavior. The score ranges from 0 to 78, with values below 57 between 3 and 6 months being strongly associated with CP and also allowing the characterization of the motor subtype. Its application is quick (10–15 minutes), low-cost, and reproducible, but requires training to ensure standardization [24,25] (Table 3).

This proposal breaks with the traditional practice of waiting for evident motor delays only in the second year of life, advocating the adoption of screening protocols with a positive impact on the child's motor and cognitive prognosis and on the well-being of families [22].

Observational studies reinforce the value of early recognition of clinical signs in the detection of CP, and the absence of the Moro reflex and plantar grasp in at-risk 310 infants can predict adverse outcomes, including CP [25]. Retention of primitive reflexes may be associated with motor delay in children with CP or correlate with motor and postural difficulties [26,27]. Romeo et al. confirmed that HINE subscores robustly stratify risk [28]. In cases such as congenital Zika syndrome, the persistence of multiple primitive reflexes and the absence of the parachute reaction were associated with worse motor outcomes [29].

Cerebral magnetic resonance imaging and transfontanellar ultrasound increase diagnostic accuracy when they 320 reveal typical lesions, such as periventricular leukomalacia 321 (PVL) and cortical infarcts [22].

Table 2 Main clinical signs suggestive of risk for cerebral palsy (0-12 months) [21,23,25].

Clinical finding	Description	Clinical implication
Poor cervical balance > 3-4 m; hyper- extension/axial arching	Difficulty holding the head up, stiff- ness or arching of the torso.	Suggests a delay in postural control.
Closed fists > 3 m; postural asymmetry; hand preference < 12 m	Adducted thumb, clenched fists > 3 m, asymmetrical posture, hand preference < 12m	Early sign of hemiplegia
Persistent changes in muscle tone and primitive reflexes	Spastic hypertonia (scissoring pattern), hypotonia, persistent Moro reflex or ATNR > 5 m or absence of placing reflex.	Indicate impairment of the central motor pathways.
Feeding difficulties	Ineffective sucking, sucking-swallow- ing incoordination, drooling	Indicate bulbar involvement and risk of dysphagia.
Axial/proximal motor delay	No rolling, no forearm support, insufficient prone position, lack of upward vertical gaze.	Indicates deficit in axial strength and overall motor control, and cranial nerve involvement, related to dyskinesia.

Prospective studies confirm the clinical applicability of standardized instruments for early detection of CP. In the United Kingdom, Marcroft et al. followed 95 extremely premature infants until 2 years of corrected age; 13 (13.7%) were diagnosed with CP. GMA performed between 11 and 18 corrected weeks showed the highest accuracy (sensitivity of 92.3% and specificity of 98.9%), surpassing LAPI and cranial ultrasound (cUS), which did not add predictive value to GMA [30].

323

326

327

328

329

330

331

332

333

334

335

336

337

339

340

341

342

343

344

346

347

348

349

350

351

352 353

354

355

356 357

A study conducted in Mexico with children up to 18 months old found an incidence of 4.4/1000 live births higher than the average of 2.0-2.5/1000 in developed countries. The most common early clinical signs included poor head control after the fourth month, persistent clenched hands, postural asymmetry, and early hand preference. Feeding difficulties, such as ineffective sucking and choking, were also observed. Neuroimaging showed PVL as the most frequent lesion, followed by intraventricular/subependymal hemorrhage and cortical atrophy associated with ventricular dilation [31].

The CINEPS multicenter study evaluated 395 preterm infants with \leq 32 weeks of gestation using sMRI between 39-44 weeks, GMA, and HINE between 12-18 weeks. At 2 years, 39 children (11.5%) were diagnosed with CP, mostly Gross Motor Function Classification System (GMFCS) level I (28 cases). The combination of sMRI with GMA had a specificity of 100% and a sensitivity of 22%; sMRI with HINE had a sensitivity of 32% and a specificity of 98%. For moderate to severe cases (levels II-V), sensitivity ranged from 78% to 100%, but remained low for mild cases, highlighting the limitations of these tools in the early detection of more subtle cases [32].

Interpreting PVL as an etiological factor requires caution since normal variants and genetic diseases can mimic its characteristics in neuroimaging [33].

Recent studies with artificial intelligence (AI) and 358 machine learning (ML) have demonstrated the potential to 359 detect subtle motor changes that are not yet visible in clinical examination, such as deviations in amplitude and motor coordination. These algorithms can complement methods such as GMA, increasing the screening sensitivity and allowing timely interventions during the critical window of neuroplasticity [22,33].

361

362

363

364

365

367

368

369

370

373

374

375

382

In summary, the association between early clinical signs, standardized tools, and neuroimaging allows a faster diagnosis of cerebral palsy, favors early interventions, and improves functional outcomes.

Developmental Disorder

Developmental disorder is an umbrella term that encompasses any condition in which a child development does not 372 follow the expected course, whether in language, cognition, socialization, behavior, or motor skills [2,3].

Examples (according to DSM-5-TR and ICD-11):

- ASD (Autism Spectrum Disorder) 376 • ADHD (Attention Deficit Hyperactivity Disorder) 377 • Communication Disorders (speech, language, pragmatics) 378 • Motor Coordination Disorders 379
- Intellectual Disability 380 • Specific Learning Disorders 381

Autism Spectrum Disorder (ASD)

Autism Spectrum Disorder (ASD) is a neurodevelopmental 383 disorder characterized by a set of persistent deficits in communication and social interaction, associated with restricted 385 and repetitive patterns of behavior, interests, or activities. manifesting from the early developmental period [3].

387

388

389

390

391

392

393

394

395

396

397

398

399

401

402

403

404

405

406

407

408

409

410

411

412

413

The diagnosis is based on persistent deficits in communication and social interaction across a range of contexts. including difficulties in socio-emotional reciprocity, nonverbal communicative behaviors, and the development or maintenance of relationships; and restricted and repetitive patterns of behavior, interests, or activities, manifested by stereotyped movements, insistence on routines, fixed interests, and/or alterations in sensory reactivity. These symptoms must be present from early development and cause significant impairment in overall functioning [2,3].

Symptom onset typically occurs in early childhood, although full clinical manifestation may only become evident when social demands exceed individual capabilities. Severity is determined by the intensity of deficits and functional impact, being heterogeneous - ranging from level 1, compatible with relative independence, to level 3, requiring substantial support in multiple contexts [2,3].

Thus, ASD is not defined by a single marker, but by a dimensional and continuous pattern, reflecting the interaction between genetic predisposition, neurobiological and environmental factors, and characterized by a wide variability of clinical, cognitive, and adaptive profiles.

In the last two decades, the prevalence of ASD has shown marked growth, due to greater awareness, advances in screening methods, changes in diagnostic criteria, and an increase in the number of cases. Global prevalence studies estimate the prevalence to be 1/100 [34]. In 2000, surveys by the Autism and Developmental Disabilities Monitoring

(ADDM) indicated a prevalence of 1/150; 1/88 in 2008, 1/68 416 in 2014, 1/54 in 2020, and CDC data from 2025 show that 1/ 31 children have ASD[35] ASD is no longer considered rare 418 and has become an important public health challenge, 419 requiring an organized and integrated response in the clinical, educational, and social fields.

420

421

422

432

436

437

Early recognition of warning signs is crucial to expanding opportunities for intervention in time before windows of opportunity close. The scientific literature points out that 424 the most consistent signs include shared attention deficit, considered the most robust marker, lack of response to 426 name, absence of communicative gestures - especially 427 declarative ones -, delay in expressive language, impover- 428 ished symbolic play, reduced sustained gaze, in addition to 429 the presence of repetitive and restrictive behaviors (RRBs) 430 of atypical quality and frequency and preference for objects 431 over human faces[36] (Table 4).

In recent years, advances such as Early Point and eye 433 tracking have stood out as potential objective biomarkers, capable of anticipating identification even before the full 435 emergence of clinical manifestations [37,38].

Among all these signs, shared attention deficit occupies a prominent place. In typical development, it is expected that between 9-12 months, babies will follow the gaze or gesture of an adult, that at 12 months they will begin to point both to ask (proto-imperative) and to share interest (proto-declarative). and that between 12-18 months they will alternate their gaze between object and caregiver, consolidating social reciprocity. Gestures precede verbal language and function as scaffolding for the acquisition of speech. In typical babies, conventional

Table 4 Risk signs for ASD.

Early warning sign (red flag)	Expected age in typical development	Change observed in ASD
, , , , ,	1 3 11 1	
Shared attention deficit	9–12 months: follows gaze/gesture; 12–18 months: alternates gaze.	Absence of eye contact, does not point to share, does not alternate
	12-16 months. atternates gaze.	gaze between object/caregiver.
No response to name	9–12 months: responds consistently	Repeated failure to respond, despite
	,	preserved hearing.
Absence of communicative gestures	< 12m: "goodbye", show; 12–15m:	Absence of "goodbye" at 12 months, no
	point; 16m: \geq 16 gestures	declarative pointing (12 -18 months),
		poor gestural repertoire at 16 months.
Expressive language delay	16m: isolated words; 24m: 2-word	No words by 16 months or no 2-word
	phrases	phrases by 24 months; delay associ-
Reduced sustained gaze	From 2 2 months; responsive eve	ated with social deficits.
Reduced sustained gaze	From 2–3 months: responsive eye contact	Progressive decrease in attention dur- ing eye contact between 2–6 m;
	contact	inconsistent eye contact.
Repetitive and restrictive behaviors	6-24m: transient repetitive	Persistence, high intensity, inflexibil-
·	movements .	ity, functional impact; replaces sym-
		bolic play.
Preference for objects	6–12 months: natural preference for	Increased fixation on geometric
	human faces	objects/patterns rather than faces.
Biomarkers (Early Point, Eye Tracking)	12–18m: declarative pointing; 2–6m:	Absence of declarative pointing; early
	eye fixation	decline in eye attention; increased
Loss of acquired milestones	Continuous skill progression is	focus on objects. Regression: loss of previously acquired
2033 of acquired finescones	expected.	words, gestures, or eye contact.
Standardized screening (M-CHAT-R/F,	18 and 24 months (AAP recommends	Identifies subtle signs and increases
CSBS-DP)	universal application)	the chance of early detection.

gestures such as "bye-bye" and the act of showing objects already appear before 12 months, and at 16 months, a minimum diversity of 16 gestures is expected. In children with ASD. these behaviors tend to be absent, delayed, or qualitatively impoverished. Bryson et al. observed deficits as early as 12 months in at-risk siblings, while Gammer et al., applying the Autism Observational Scale for Infants (AOSI), identified early deficits in babies who later met the criteria for ASD [34,36]. The absence of shared attention before 18 months has high predictive value for diagnosis, and this domain is one of the best predictors of language development and social competence [37]. In line with this, the AAP and SBP recommend that its absence be considered an essential red flag in the 18- and 24-month consultations [38].

447

448

449

450

451

452 453

454

455

456

457

458

459

460

461

462

463

464 465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487 488

489

490

491

492

493

494

496

497

498

499

500

501

502

503

504

505

506

507

In autism, the absence of the "bye-bye" gesture is frequently observed around 12 months, as well as declarative pointing between 12 and 18 months, considered one of the main red flags and the basis of the Early Point concept [37]. Prospective studies with at-risk siblings reinforce that the lack or delay in gestures differentiates early on those who evolve into ASD [34,37].

Another widely studied marker is the absence of response to name between 9 and 12 months [37,39]. Non-response to name may correlate with worse adaptive outcomes at 3 years. Thus, this sign has become a priority in screening protocols [40].

Expressive language delay is also a critical marker, being one of the most consistent and reported red flag signs for ASD. Two milestones stand out: absence of single words by 16 months and absence of spontaneous two-word phrases by 24 months, and when associated with social deficits, it increases the accuracy for ASD[13] Lord et al. reinforced that this absence, especially in conjunction with the lack of declarative gestures, is highly predictive [41].

Responsive and sustained eye contact is one of the first indicators of social development in babies, appearing in the first months of life, and in children with ASD, this marker is diminished or inconsistent from the first year, hindering the construction of shared attention and communicative engagement [42].

Eye-tracking studies show that babies who were later diagnosed with ASD have a progressive decline in eye fixation between 2 and 6 months. Jones and Klin identified that this early decrease in attention to human gaze was one of the most consistent precursors of ASD [42], while Elsabbagh et al. confirmed that at-risk siblings have face orientation deficits before the full manifestation of symptoms [43].

Repetitive and restrictive behaviors, although also present in typical children, take on distinct characteristics in ASD. In these children, they emerge at the end of the first year and become more intense in the second, becoming persistent, inflexible, and with functional impact, replacing symbolic play and hindering social interaction [44–46].

Finally, visual interest in objects to the detriment of human faces constitutes another early marker. Children between 6 and 12 months old who developed ASD exhibited less fixation on human faces and greater focus on non-social elements, and those who prefer geometric patterns are more likely to have ASD, in addition to being associated with greater clinical severity [6,7,47].

Extreme food selectivity and sensory disturbances are observed from the first year of life and can be considered signs of ASD [48].

A possible biological marker associated with the risk of ASD is the accelerated growth of head circumference after 3-4 months of age. Longitudinal studies have shown that 510 some individuals who are later diagnosed with ASD exhibit a disproportionate acceleration of head circumference during the first year, especially between 4-12 months. This rapid increase may reflect alterations in neuronal proliferation, synaptogenesis, and synaptic pruning processes, resulting in atypical patterns of brain connectivity. Although the finding 516 is not specific and should not be used alone as a diagnostic 517 criterion, its presence, when associated with early clinical 518 signs such as shared attention deficits and absence of com- 519 municative gestures, reinforces the need for surveillance 520 and in-depth investigation [49].

Families have a low rate of detection of signs of autism and face many challenges in Brazil for this identification, diagnosis, and timely intervention [50]. In this context, it is crucial to highlight the role of standardized screening tests, such as the Modified Checklist for Autism in Toddlers, Revised with Follow-Up (M-CHAT-R/F), recommended by the AAP for universal application at 18 and 24 months [38]. The M-CHAT-R/F is especially useful for identifying subtle signs in primary health care settings, allowing at-risk children to be referred early for specialized evaluation. In addition to the M-CHAT-R/ F, other instruments such as the CSBS-DP and observational scales complement screening in at-risk populations [38,51].

521

527

528

530

531

532

533

534

535

538

539

540

541

545

546

547

548

549

550

551

556

557

558

559

560

561

562

563

564

565

Another essential point is that, at any age, the loss of previously acquired developmental milestones should be considered an immediate red flag, requiring detailed investigation. Regression of skills, such as loss of words, gestures, or eye contact, substantially increases the clinical suspicion of ASD and other neurodevelopmental conditions, and cannot be attributed to benign individual variations [51].

In summary, early warning signs of ASD encompass deficits in multiple domains - social, communicative, linguistic, and behavioral – which, when assessed in an integrated manner, allow for greater sensitivity in clinical screening. The combination of classic behavioral markers (shared attention, gestures, name response, language, and gaze), emerging biomarkers (Early Point and eye tracking), and standardized screening protocols (M-CHAT-R/F) represents the most promising strategy for early identification and timely referral for intervention, in line with Neuroscience recommendations.

Intellectual Disability

Intellectual disability is defined by cognitive and adaptive 552 deficits with onset during the developmental period [2,3]. It involves impairments in reasoning, problem-solving, academic learning, and social skills, which compromise autonomy and can be measured through Intelligence Quotient tests, such as the SON-R and the WISC. Early signs indicative of ID are:[2,3]

- 0-6 months
 - 1. Delayed social smile.
 - 2. Little interest in faces or environmental stimuli.
 - 3. Persistent hypotonia.
- 6–12 months
 - 1. Delay in maintaining a sitting position.
 - Poor imitation of sounds or expressions.

Jornal de Pediatria xxxx;xxx(xxx): 101478

- 3. Difficulty maintaining eye contact.
- 4. Absence of babbling until 9 months.
- 5. Not responding to name after 9 months.
- 12-18 months

566 567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584 585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

616

617

618

619

620

621

622

623

- 1. Absence of independent walking until 18 months.
- 2. Absence of meaningful words until 15-18 months.
- 3. Difficulty exploring objects functionally.
 - 4. Restricted vocabulary.
 - 5. Difficulty understanding simple commands.
- 18-24 months
 - 1. Excessive dependence on simple activities (feeding, dressing, manipulating toys).
 - 2. Difficulty with pincer grasp or manipulating small objects.
 - 3. Delay in autonomy (feeding, dressing, toilet training).
- Preschool
 - 1. Delay or absence of symbolic play.
 - 2. Difficulty with simple rules of social games.
 - 3. Slurred speech, lexical restrictions, grammatical limi-
 - Increased dependence on personal care.
- Domains of global developmental delay as risk markers for ID
 - 1. Language/Communication: absence of babbling until 9 months; not responding to name after 9 months; absence of words until 15-18 months.
 - 2. Cognition: difficulty imitating gestures, solving simple problems, or little interest in exploring the environment.
 - 3. Fine Motor Skills: difficulty manipulating small objects (e.g., pincer grasp).
 - 4. Gross Motor Skills: delay in rolling over (>6 months), sitting (>9 months), crawling (>12 months), walking (>18 months).
 - 5. Socio-adaptive: reduced eye contact, delay in autonomy (feeding, dressing).

The more severe the ID, the sooner global delays become evident, often as early as the first year of life. Thus, Global Development Delay (GDD) should be interpreted as a major red flag, requiring detailed neurological evaluation [47].

At any age, the loss of previously acquired milestones should be considered a warning sign for ID, ASD, or other neurological conditions. The application of screening instruments such as ASQ, PEDS, Bayley, and, for autism, the M-CHAT-R/F, substantially increases the chance of early detection [12,13]. Early intervention has a positive impact on cognition, language, and behavior, reinforcing the importance of early suspicion and referral [8,20].

Language Development Disorder (LDD) 614

Language Development Disorder (LDD) is characterized by 615 persistent difficulties in the acquisition and use of language, not explained by intellectual disability, ASD, hearing loss, or environmental deprivation. They can affect phonology, vocabulary, grammar, or pragmatics, interfering with functional communication [52].

The signs can be observed from the first months of life: between 6-10 months, the absence of canonical babbling, little varied vocalizations, and low responsiveness to the environment stand out; from 12-18 months, the absence of 624 meaningful words and the scarce use of communicative gestures, such as pointing or waving goodbye; around 18 months, a restricted vocabulary and difficulty in understanding simple commands; at 24 months, the absence of spontaneous combination of two words; and after 3 years, poorly intelligible speech, lexical restrictions, grammatical and syntactic limitations remain [52].

629

630

631

641

642

643

644

645

646

647

648

651

652

654

655

656

657

658

659

660

661

662

667

668

669

671

673

These signs are also systematized in validated scales. The Early Language Milestone Scale (ELM), applied from 0 to 36 months, screens for delays in expressive, receptive, and auditory-visual language, highlighting as risk markers the absence 635 of babbling up to 12 months, restricted vocabulary at 18 636 months, lack of word combination up to 24 months, and failures to understand simple commands. The ABFW - Test of 638 Child Language, aimed at children aged 3 to 12 years, details 639 vocabulary, phonology, fluency, and pragmatics, revealing in children with LDD a reduced vocabulary, the presence of atypical phonological processes beyond their age, fragile discursive coherence, and subtle pragmatic difficulties [52].

Thus, both the early signs observed clinically and standardized instruments such as ELM and ABFW reinforce the importance of screening and early referral for medical, auditory, and speech-language pathology intervention.

Developmental Coordination Disorder (DCD)

DCD involves persistent motor difficulties that interfere with 649 daily living and academic activities, not justified by cerebral palsy, neuromuscular diseases, or intellectual disability [53]. The literature describes the following early signs:

- 6-9 months: delay in sitting without support, frequent 653 falls in sitting position, poorly coordinated movements.
- 12 months: difficulty crawling or supporting oneself to stand; unsteady gait upon onset.
- 18 months: delay or immaturity in walking; difficulty manipulating simple objects, such as blocks or spoons.
- 2-3 years: frequent stumbling, difficulty climbing stairs, playing with toys, kicking or throwing a ball, riding a tricycle.
- Preschool: difficulty holding a pencil, drawing simple shapes, cutting paper, or dressing independently.

Attention Deficit Hyperactivity Disorder (ADHD) 663

ADHD is defined by a persistent pattern of inattention, hyperactivity, and impulsivity that causes impairment in two or more settings, with onset before age 12. Although the diagnosis can only be established after age 4, early signs of risk can be detected in the NPMD [2,3,54].

Early signs in the NPMD: [54,55]

- 0-6 months: marked irritability, sleep difficulties, high 670 reactivity to environmental stimuli.
- 6−12 months: difficulty maintaining sustained visual 672 attention on toys or social interactions.
- 12–24 months: excessive motor activity. difficulty 674 remaining seated on laps, rapid and disorganized toy 675 changes, frequent falls. 676

• Preschool (3–5 years): marked impulsivity (not waiting for turns, interrupting playtime), low frustration tolerance, difficulty maintaining focus on directed activities. frequent accidents due to impulsive behavior.

It is essential to differentiate between inadequate routines, such as lack of stimulation, toxic stress, or excessive screen time, which can cause NPMD delays, and cases of neurodevelopmental disorders, such as ADHD or ASD.

It is emphasized that in the presence of risk factors for any developmental disorder, early intervention is recommended; that is, even before showing any signs or delays, the child will benefit from stimulation to reach milestones. In the case of detecting warning signs of autism or ADHD, for example, intervention may no longer be considered early because a delay is already present, but it is still valid to intervene in time before the windows of opportunity close, taking advantage of the period of maximum neuroplasticity.

Study limitations 694

677 678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

695

696

697

698

699

700

701

702

703

704

705

706

707

709

710

711

712

713

715

716

717

718

719

720

721

This review has some limitations that should be considered. There is a risk of publication bias, since the search only included consolidated databases, and there may have been a loss of unpublished or difficult-to-access studies, which could overestimate the available evidence. In addition, there is selection bias because, despite the use of structured descriptors (DeCS/MeSH), the choice of studies may have included heterogeneous and non-comparable evidence. The heteroge**neity of the studies** also constitutes an important limitation, since they varied in methodological design, sample size, age of children, and diagnostic criteria, making quantitative synthesis and direct comparability difficult. Another aspect is the risk of generalization, since the studies that were analyzed came from distinct cultural and socioeconomic contexts without adequate stratification. Finally, there was a lack of data for subgroup analysis, as differences in early signs according to sex, prematurity, perinatal risk factors, family history, and early and inappropriate exposure to screens and toxic stress were not explored, which could refine the clinical applicability of the findings. These data suggest critical interpretation, but the methodological care in the search and application of quality assessment using validated instruments such as the Newcastle-Ottawa Scale, CASP, and AMSTAR is noteworthy. This information does not invalidate the robustness of the warning signs highlighted in this review and their applicability by physicians who monitor children so that they can reach their maximum developmental potential.

Conclusion 722

Early recognition of warning signs for neurodevelopmental 723 disorders is crucial for modifying functional trajectories and 724 reducing long-term impairments. The literature demon-725 strates that early clinical markers, when associated with 726 72.7 standardized screening instruments, substantially increase 728 diagnostic accuracy and allow timely interventions during 729 critical periods of brain plasticity. For pediatric practice, 730 this implies systematic monitoring of developmental milestones, screening, and the routine use of validated scales, as well as immediate or timely intervention in the face of any risk factor, delay, or regression. However, significant gaps remain, such as the low sensitivity of isolated clinical screening and the need for greater cultural validation of available tools. In the coming years, advances in objective biomarkers and artificial intelligence should expand the capacity for early screening and diagnosis, consolidating early detection as a central axis to help at-risk children reach their best developmental potential.

740

741

742

743

746

747

748

749

750

751

752

754

755

756

757

758

759

760

761

762

763

764

765

767

768

769

771

772

773

774

775

777

778

- 1-1	ın	1	n	12		21	п	n	n	0	۰
F	ш	α		ıa	l	יכ	ш	μ	ν	v	L

None declared.

Data availability statement

The author declares that the data are available upon 744 request. 745

Conflicts of interest

The author declares no conflicts of interest.

Editor

R. Soibelmann Procianoy

References

- [1]. Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4(4):339-46.
- [2]. World Health Organization (WHO). International Classification of Diseases for Mortality and Morbidity Statistics - ICD-11. Geneva: WHO; 2019, 11th Rev[cited 2025 Oct 13]. Available from https://icd.who.int/browse/2025-01/mms/en.
- [3]. American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR). Washington, DC: APA; 2022, 5th ed., t.
- [4]. Nelson 3rd CA, Gabard-Durnam LJ. Early adversity and critical periods: neurodevelopmental consequences of violating the expectable environment. Trends Neurosci. 2020;43(3):133-43.
- [5]. Zwaigenbaum L, Penner M. Autism spectrum disorder: advances in diagnosis and evaluation. BMJ. 2018;361:k1674.
- [6]. Sociedade Brasileira de Pediatria (SBP). Departamento Científico de Pediatria do Desenvolvimento e Comportamento. Manual de Orientação sobre Transtorno do Espectro do Autismo. Rio de Janeiro: SBP; 2019.
- [7]. Olusanya BO, Davis AC, Wertlieb D, Boo NY, Nair MK, Halpern R, et al. Global Research on Developmental Disabilities Collaborators. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob Health. 2018;6(10):e1100-21. Erratum in: Lancet Glob Health. 2018;6(12):e1287.
- [8]. Choo YY, Agarwal P, How CH, Yeleswarapu SP. Developmental 776 delay: identification and management at primary care level. Singapore Med J. 2019;60(3):119-23.
- Araújo LA, Veloso CF, Souza MC, Azevedo JM, Tarro G. The potential impact of the COVID-19 pandemic on child growth 780

- [10]. Sheldrick RC, Merchant S, Perrin EC. Identification of developmental-behavioral problems in primary care: a systematic review. Pediatrics. 2011;128(2):356—63.
- 786 [11]. Demirci A, Kartal M. The prevalence of developmental delay
 787 among children aged 3-60 months in Izmir. Turkey. Child Care
 788 Health Dev. 2016;42(2):213-9.
 - [12]. Tonelli M, Parkin P, Leduc D, Brauer P, Pottie K, Jaramillo Garcia A, et al. Canadian Task Force on Preventive Health Care. Recommendations on screening for developmental delay. CMAJ. 2016;188(8):579–87.
 - [13]. Nelson HD, Nygren P, Walker M, Panoscha R. Screening for speech and language delay in preschool children: systematic evidence review for the US Preventive Services Task Force. Pediatrics. 2006;117(2):e298–319. Erratum in: Pediatrics. 2006;117(6):2336-7.
- 798 [14]. Rydz D, Srour M, Oskoui M, Marget N, Shiller M, Birnbaum R,
 799 et al. Screening for developmental delay in the setting of a
 800 community pediatric clinic: a prospective assessment of parent-report questionnaires. Pediatrics. 2006;118(4):e1178–86.
- 802 [15]. Bayley N. Bayley scales of infant and toddler development. 803 3rd ed. San Antonio, TX: Pearson; 2006.
- 804 [16]. Soleimani F, Hassanati F, Ghorbanpour Z, Vahedi M, Azari N,
 805 Kraskian A, et al. Concurrent validity of the Bayley screening
 806 and the Bayley-III in Persian-speaking children. Iran J Child
 807 Neurol. 2025;19(2):51–64.
- 808 [17]. Fleurkens-Peeters MJ, Zijlmans WC, Akkermans RP, Sanden MW, Janssen AJ. The United States reference values of the Bayley III motor scale are suitable in Suriname. Infant Behav Dev. 2024;74:101922.
- [18]. Warren R, Kenny M, Bennett T, Fitzpatrick-Lewis D, Ali MU,
 Sherifali D, et al. Screening for developmental delay among
 children aged 1-4 years: a systematic review. CMAJ Open.
 2016;4(1):E20-7.
- [19]. Kumar R, Ali M, Pasha MS, Ansari HW, Durrani N. Knowledge, attitude, and practices of parents regarding the red flags of developmental milestones in children aged 0-5 years in Karachi,
 Pakistan: a cross-sectional study. BMC Pediatr. 2024;24(1):120.
- [20]. Peacock-Chambers E, Ivy K, Bair-Merritt M. Primary Care
 Interventions for early childhood development: A systematic
 review. Pediatrics. 2017;140(6):e20171661.
- 823 [21]. Fuschlberger T, Leitz E, Voigt F, Esser G, Schmid RG, Mall V,
 824 et al. Stability of developmental milestones: insights from a
 825 44-year analysis. Infant Behav Dev. 2024;74:101898.
- R22 [22]. Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, et al. Early, accurate diagnosis and Early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 2017;171(9):897–907. Erratum in: JAMA Pediatr. 2017;171(9):919.
- 831 [23]. Araújo LA, Silva LR, Mendes FA. Digestive tract neural control
 832 and gastrointestinal disorders in cerebral palsy. J Pediatr (Rio
 833 J). 2012;88(6):455-64.
- 834 [24]. Morgan C, Fetters L, Adde L, Badawi N, Bancale A, Boyd RN,
 835 et al. Early intervention for children aged 0 to 2 years with or
 836 at high risk of cerebral palsy: international clinical practice
 837 guideline based on systematic reviews. JAMA Pediatr.
 838 2021;175(8):846-58.
- 839 [25]. Heineman KR, Bos AF, Hadders-Algra M. Infant Motor profile
 840 and cerebral palsy: promising associations. Dev Med Child
 841 Neurol. 2011;53(Suppl 4):40-5.
- 842 [26]. Aiyejusunle C, Olawale O, Onuegbu N. Association of selected
 843 primitive reflex patterns with motor development among
 844 Nigerian children with cerebral palsy (a hospital-based study).
 845 J Clin Sci. 2016;13(1):12.
- 846 [27]. Gieysztor EZ, Choińska AM. Paprocka-Borowicz M. Persistence
 847 of primitive reflexes and associated motor problems in healthy
 848 preschool children. Arch Med Sci. 2018;14(1):167-73.

[28]. Romeo DM, Cioni M, Palermo F, Cilauro S, Romeo MG. Neurological assessment in infants discharged from a neonatal intensive care unit. Eur J Paediatr Neurol. 2013;17(2):192—8.

- [29]. Aragão MF, Holanda AC, Brainer-Lima AM, Petribu NC, Castillo M, van der Linden V, et al. Nonmicrocephalic infants with congenital Zika syndrome suspected only after neuroimaging evaluation compared with those with microcephaly at birth and postnatally: how large is the Zika Virus "iceberg"? AJNR Am J Neuroradiol. 2017;38(7):1427–34.
- [30]. Marcroft C, Khan A, Embleton ND, Trenell M, Plötz T. Movement recognition technology as a method of assessing spontaneous general movements in high risk infants. Front Neurol. 2015;5:284.
- [31]. Barron-Garza F, Coronado-Garza M, Gutierrez-Ramirez S, Ramos-Rincon JM, Guzman-de la Garza F, Lozano-Morantes A, et al. Incidence of cerebral palsy, risk factors, and neuroimaging in Northeast Mexico. Pediatr Neurol. 2023;143:50—8.
- [32]. Jain S, Harpster K, Merhar S, Kline-Fath B, Altaye M, Illapani VS, et al. Early diagnosis of cerebral palsy in preterm infants with MRI, general movements and neurological exam. MedRxiv [Preprint]. 2024 Dec 11:2024.12.10.24318810. doi: 10.1101/2024.12.10.24318810.
- [33]. Reddy N, Doyle M, Hanagandi P, Taranath A, Dahmoush H, Krishnan P, et al. Neuroradiological mimics of periventricular leukomalacia. J Child Neurol. 2022;37(2):151–67.
- [34]. Bryson SE, Zwaigenbaum L, McDermott C, Rombough V, Brian J. The Autism Observation Scale for infants: scale development and reliability data. J Autism Dev Disord. 2008;38(4):731–8.
- [35]. Shaw KA, Williams S, Patrick ME, Valencia-Prado M, Durkin MS, Howerton EM, et al. Prevalence and early identification of Autism spectrum disorder among children aged 4 and 8 years Autism and Developmental Disabilities Monitoring Network, 16 sites, United States. 2022. MWWR Surveill Summ. 2025;74(2):1—22.
- [36]. Gammer I, Bedford R, Elsabbagh M, Garwood H, Pasco G, Tucker L, et al. Behavioural markers for autism in infancy: scores on the Autism Observational Scale for Infants in a prospective study of at-risk siblings. Infant Behav Dev. 2015;38:107—15.
- [37]. Zwaigenbaum L, Bryson S, Lord C, Rogers S, Carter A, Carver L, et al. Clinical assessment and management of toddlers with suspected autism spectrum disorder: insights from studies of high-risk infants. Pediatrics. 2009;123(5):1383–91.
- [38]. Hyman SL, Levy SE, Myers SM. Council on Children With Disabilities, Section on Developmental and Behavioral Pediatrics. Identification, Evaluation, and Management of Children With Autism spectrum Disorder. Pediatrics. 2020;145(1):e20193447.
- [39]. Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N, Zwai-genbaum L, et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics. 2011;128(3):e488–95.
- [40]. Wetherby AM, Watt N, Morgan L, Shumway S. Social communication profiles of children with autism spectrum disorders late in the second year of life. J Autism Dev Disord. 2007;37 (5):960-75.
- [41]. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop S. Autism Diagnostic Observation Schedule (ADOS-2). 2nd ed. Torrance, CA: Western Psychological Services; 2012, [cited 2025 Oct 14]. Available from https://www.research.chop.edu/car-autism-roadmap/autism-diagnostic-observation-schedule-2nd-edition-ados-2.
- [42]. Jones W, Klin A. Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature. 2013;504(7480):427–31.
- [43]. Elsabbagh M, Mercure E, Hudry K, Chandler S, Pasco G, Charman T, et al. Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Curr Biol. 2012;22 (4):338–42.
- [44]. Kim SH, Lord C. Restricted and repetitive behaviors in toddlers 915 and preschoolers with autism spectrum disorders based on the 916

917	Autism Diagnostic Observation Schedule (ADOS). Autism Res
918	2010;3(4):162-73.

919

920

921

922

923

924

925

926

927

928

929 930

931

932

933

- [45]. Lam KS, Aman MG. The Repetitive Behavior Scale-revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord. 2007;37(5):855–66.
- [46]. Troyb E, Orinstein A, Tyson K, Eigsti IM, Naigles L, Fein D. Restricted and repetitive behaviors in individuals with a history of ASDs who have achieved optimal outcomes. J Autism Dev Disord. 2014;44(12):3168–84.
- [47]. Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil. 2011;32(2):419—36. Erratum in: Res Dev Disabil. 2013;34(2):729.
- [48]. Nogueira-de-Almeida CA, de Araújo LA, da V Ued F, Contini AA, Nogueira-de-Almeida ME, Martinez EZ, et al. Nutritional factors and therapeutic interventions in Autism Spectrum Disorder: A narrative review. Children (Basel). 2025;12(2):202.
- 934 [49]. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ, 935 et al. Early brain development in infants at high risk for autism 936 spectrum disorder. Nature. 2017;542(7641):348–51.

[50]. Gomes PT, Lima LH, Bueno MK, Araújo LA, Souza NM. Autism in Brazil: a systematic review of family challenges and coping strategies. J Pediatr (Rio J). 2015;91(2):111–21.

939

940

941

942

943

944

946

947

948

951

- [51]. Guthrie W, Wallis K, Bennett A, Brooks E, Dudley J, Gerdes M, et al. Accuracy of autism screening in a large pediatric network. Pediatrics. 2019;144(4):e20183963.
- [52]. Law J, Garrett Z, Nye C. Speech and language therapy interventions for children with primary speech and language delay or disorder. Cochrane Database Syst Rev. 2003;2003(3): CD004110.
- [53]. Blank R, Smits-Engelsman B, Polatajko H, Wilson P. European Academy for Childhood Disability. European Academy for Childhood Disability (EACD): recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Dev Med Child Neurol. 2012;54 (1):54–93.
- [54]. Posner J, Polanczyk GV, Sonuga-Barke E. Attention-deficit 953 hyperactivity disorder. Lancet. 2020;395(10222):450–62. 954
- [55]. Thapar A, Cooper M. Attention deficit hyperactivity disorder. 955 Lancet. 2016;387(10024):1240-50. 956