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KEYWORDS Abstract

Neonates; Objective: To explore the application of machine learning methods for screening risk factors for
Bacterial meningitis; long-term adverse prognosis in neonatal bacterial meningitis, determine the final prediction
Prognosis; model, and evaluate its predictive value.

Prediction; Methods: This study included 139 full-term neonates diagnosed with neonatal bacterial meningi-
Machine learning tis in the capital institute of pediatrics between January 2019 and December 2023. Based on fol-

low-up outcomes, they were divided into a poor prognosis group (n=45) and a good prognosis
group (n=94). Thirty-three clinical variables were collected. Feature selection was performed
using the Least Absolute Shrinkage and Selection Operator, Boruta, and Recursive Feature Elimi-
nation. Seven machine learning models were constructed. Model performance was evaluated
using metrics including the area under the receiver operating characteristic curve, accuracy,
and sensitivity. The Shapley Additive explanation method was used to interpret the models.

Results: Among the seven models, The Random Forest model demonstrates the best overall pre-
dictive performance, although Logistic Regression achieved the highest discriminative ability
(AUC: 0.903), Random Forest was more suitable for clinical application due to its superior accu-
racy (0.881), better calibration (Brier score: 0.123), and balanced sensitivity (0.887) and

Q2 * Corresponding author at: Capital Institute of Pediatrics, Department of Neonatology, Beijing, China.
E-mail: cxswyj@vip.sina.com (Y. Wang).
1 Ying Chen and Shengpei Wang contributed equally to this work and are listed as co-first authors.

https://doi.org/10.1016/j.jped.2025.101472
0021-7557/© 2025 Published by Elsevier Espafa, S.L.U. on behalf of Sociedade Brasileira de Pediatria. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

Please cite this article in press as: Y. Chen, S. Wang, J. Wu et al., Development of a machine learning-based predictive
model for long-term adverse outcomes in neonatal bacterial meningitis, Jornal de Pediatria (2025), https://doi.org/
10.1016/j.jped.2025.101472



http://orcid.org/0009-0008-7088-2527
http://orcid.org/0000-0002-5674-3378
http://orcid.org/0000-0001-7170-568X
http://orcid.org/0009-0006-5197-8721
http://orcid.org/0000-0001-7407-3227
http://orcid.org/0000-0002-0445-7791
http://orcid.org/0009-0008-6984-9500
http://orcid.org/0000-0002-0684-1711
http://orcid.org/0000-0002-8830-7255
mailto:cxswyj@vip.sina.com
https://doi.org/10.1016/j.jped.2025.101472
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jped.2025.101472
https://doi.org/10.1016/j.jped.2025.101472
https://doi.org/10.1016/j.jped.2025.101472
http://www.jped.com.br

O 0 N U W N

A W W W W W W W W W WNNDNDNDDNDNDNDNDNDIDN = = e e e el
- O W 0 N O U A WN = O O 0 N OO U A WN = O VW o N O U A WN = O

42

43

44
45

JID: JPED

[mSP6P;November 7, 2025;18:02]

Y. Chen, S. Wang, J. Wu et al.

specificity (0.878). Shapley Additive explanation interpretability analysis further revealed that
the top three important features were cerebrospinal fluid white blood cell count, cerebrospinal
fluid protein levels, and seizures.

Conclusion: Machine learning models, particularly the superior-performing Random Forest, are
proven to reliably predict long-term adverse outcomes in NBM patients, aiding in the identifica-
tion of high-risk individuals. Further validation in broader cohorts is warranted to enhance gen-
eralizability and clinical applicability.

© 2025 Published by Elsevier Espafia, S.L.U. on behalf of Sociedade Brasileira de Pediatria. This is
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Neonatal Bacterial Meningitis (NBM) is an infection of the central
nervous system in newborns caused by the invasion of various
bacteria. The incidence of NBM varies depending on the region
and study population. In developed countries, the overall inci-
dence has decreased to 0.3 cases per 1000 live births, whereas
in developing countries it ranges from 0.8 to 6.1 cases per 1000
live births [1]. Globally, an estimated 190,000 newborns die from
meningitis annually [2]. Over 50 % of survivors develop long-term
neurological sequelae such as deafness, blindness, cerebral palsy,
epilepsy, hydrocephalus, or cognitive impairment, among whom
one in four experiences severe disability [3].

Poor prognosis in NBM is significantly associated with vari-
ous high-risk factors, including the host’s immune status
(e.g., premature birth and low birth weight), severity of
intracranial inflammation, pathogen type, and intracranial
complications[4—6]. To reduce confounding from prematu-
rity, the present study specifically enrolled only term
infants, focusing on intrinsic prognostic factors of NBM. Tra-
ditional prognostic methods rely on single data types and
lack multimodal integration, limiting early and precise iden-
tification of poor outcomes. Machine learning (ML) can inte-
grate high-dimensional multimodal data and has shown
value in neonatal sepsis and necrotizing enterocolitis (NEC).
For example, Kausch et al. built a neonatal sepsis model
using heart rate and respiration, Area Under the Receiver
Operating Characteristic curve(AUROC) > 0.8[7], and Cho et
al. identified NEC risk factors in very low birth weight infants
with RF and LR (accuracy 0.93; AUROC 0.72)[8].

However, Al studies on NBM remain limited, focusing mainly
on diagnosis rather than prognosis. ML offers a promising way
to overcome this bottleneck, as shown by Canas et al., combin-
ing MRI and clinical data to predict tuberculous meningitis pro-
gression (balanced accuracy 0.6) and brain injury (accuracy
0.96)[9]. The team previously used nine ML algorithms to pre-
dict short-term outcomes in 433 term neonates with NBM and
found that LR achieved a sensitivity 0.541 and specificity 0.974,
aiding early intervention. Building on this, the present study
aimed to integrate multimodal data and construct an ML model
to predict long-term adverse outcomes in NBM, guiding person-
alized treatment and optimizing resource allocation [10].

Methods

Participants

This study included full-term neonates diagnosed with NBM and
hospitalized in the Department of Neonatology of the capital

institute of pediatrics between January 2019 and December 2023,
with follow-up continuing until December 31, 2024. Preterm
infants, considered at risk for neurodevelopmental delay, were
excluded. This study was approved by the Ethics Committee of the
Capital Institute of Pediatrics(Approval Number: SHERLL2024023).

Inclusion criteria: Gestational age > 37 weeks, age <
28 days, and meeting the diagnostic criteria for NBM as
follows[11]: 1) Infants with clinical signs of infection,
including hypothermia or hyperthermia, poor feeding,
apnea, or neurological symptoms such as altered con-
sciousness, seizures, muscle tone abnormalities, irritabil-
ity, or a bulging fontanel; 2) cerebrospinal fluid (CSF)
white blood cell (WBC) count > 20 x 10%6/L, accompa-
nied by elevated CSF protein (> 1.7g/L) or decreased
CSF glucose (< 2.2mmol/L); 3) positive CSF bacterial
cultures or polymerase chain reaction. Meeting the first
two criteria allowed a clinical diagnosis, whereas meet-
ing all three criteria confirmed the diagnosis.

Exclusion criteria: 1) Presence of congenital neurodeve-
lopmental malformations, genetic metabolic diseases, or
chromosomal abnormalities; 2) history of invasive central
nervous system procedures before NBM diagnosis, such as
ventriculoperitoneal shunt placement or myelomeningocele
repair; 3) intracranial hemorrhage before NBM diagnosis; 4)
other types of central nervous system infections; 5) severe
asphyxia at birth; 6) patients lost to follow-up

Follow-up

The follow-up period ended on December 31, 2024, with the
shortest follow-up duration being 13 months and the longest
being up to 5 years. Patients were followed up through out-
patient visits and telephone interviews.

Patients lost to follow-up: (1)patients were unreachable
immediately after discharge; (2)patients failed to complete
the minimum one-year follow-up period after one or more
initial contacts; (3)patients were unable to be reached dur-
ing a unified long-term follow-up survey conducted in 2024
to assess their most recent outcomes, regardless of their
previous follow-up status.

Grouping

During the follow-up period, the occurrence of any of the
following manifestations or death indicated a poor progno-
sis. Based on the follow-up results, the children were
divided into a poor prognosis group (n =45) and a good prog-
nosis group (n = 94).

Poor prognosis was defined as the occurrence of any of
the following events during the follow-up period: (1) Gesell
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developmental diagnosis scale screening was conducted for
patients attending outpatient follow-up visits, a develop-
mental quotient below 75 in any domain (adaptive, gross
motor, fine motor, language, or social behavior); (2) diagno-
sis of any neurological sequelae (e.g., epilepsy, cerebral
palsy, visual, and mental or emotional behavioral abnormali-
ties) by a certified pediatric neurologist according to stan-
dard clinical criteria; (3) presence of significant abnormal
neuroimaging findings (e.g., hydrocephalus, encephalomala-
cia, delayed myelination) as reported by a radiologist; or (4)
death. All assessors who administered the Gesell Scales
were trained and certified to ensure inter-rater reliability.
Diagnoses of neurological conditions were made by senior
pediatric neurologists.

Observational clinical variables

The authors collected 33 variables within 7 days of onset:
general information (sex, cesarean section, birth weight,
age at onset, early-onset NBM); key clinical signs (abnor-
mal temperature, seizures, poor feeding, altered
consciousness, vomiting/frothing, cyanosis, bulging fonta-
nelle, widened sutures, hepatomegaly, gazing, tone/
reflex abnormalities, jaundice, omphalitis, need for ven-
tilation or inotropes); laboratory tests (C-reactive protein
(CRP), peripheral WBC, neutrophil %, hemoglobin, plate-
let count(PLT), CSF WBC, glucose, protein, culture; blood
culture); hearing screening results and cranial MRI find-
ings (ventriculitis, hemorrhage, hydrocephalus, subdural
effusion, abscess, encephalomalacia)

Feature selection

Variables with > 10% missing were excluded; continuous
features were Z-score standardized. The dataset was split
into training (70%) and testing (30 %) with stratified sam-
pling. The authors combined three methods — LASSO
(10-fold CV), Boruta (RF 500 iterations, p < 0.01), and RFE

(RF importance ranking) — retaining only features identified
by > 2 methods to enhance reliability and mitigate method
bias. All analyses were performed with R v4.3.3.

Construction of ML models and performance
evaluation

The authors developed seven ML algorithms — logistic regres-
sion (LR), random forest (RF), support vector machine (SVM),
eXtreme Gradient Boosting (XGBoost), k-nearest neighbors
(KNN), Light Gradient Boosting Machine (LightGBM), and a neu-
ral network — using optimized hyperparameters (grid
search + 10-fold CV) with AUC-ROC as the main metric. Perfor-
mance was validated on the test set by AUROC, precision-recall
AUC, accuracy, sensitivity, specificity, PPV, NPV, Brier score, cal-
ibration-in-the-large, and decision curve analysis(DCA, thresh-
old 0.05-0.30).

The authors maximized Youden’s index to define model-
specific optimal cutoffs and bootstrapped 95 % Cls from 1000
resamples. Python scikit-learn, XGBoost, and LightGBM
packages were used.

Model interpretability

The authors applied Shapley Additive Explanations (SHAP) to
quantify feature contributions to predictions, providing
global and local interpretability across models using Python
SHAP v0.46.0[12].

Statistical methods

Continuous data were described as mean + SD or median
(IQR); normality and variance were tested with Shapir-
0—Wilk and Levene’s tests. Student’s t-test or Mann—Whit-
ney U test compared continuous variables; chi-square test
compared categorical variables; p < 0.05 considered signifi-
cant. All statistical analyses were performed with R software

Figure. 1

Patients with NBM Exclusion criteria(n=65)
2019.1-2023.12 -Perterm infant (n=50)
(=259 -Congenital inherited metabolic diseases (n=3)
-Invasive central nervous system instrumentation
before diagnosis NBM (n=3)
-Intracranial hemorrhage before diagnosis of
NBM (n=3)
Meet the inclusion -Other types of central nervous system infections
and exclusion criteria (n=4)
(n=194) -Severe asphyxia (n=2)
e | Lost to follow-up(n=55) |
Patients with outcome
data(n=139)
| According to the follow-up outcomes
{ !
Long-Term Adverse Long-Term Favorable
Prognosis(n=45) Prognosis(n=94)

Concise flow chart demonstrating the subject screening steps and grouping.NBM, neonatal bacterial meningitis.
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Table 1  Baseline characteristics of the study group.
Variables Total (n=139) Favorable Prognosis Adverse prognosis Statistic p
Group (n =94) Group (n = 45)
Birth Weight (kg) 3.48 +£0.47 3.47 £0.50 3.52+0.42 t=—0.59 0.559
Sex, n(%) x*=1.52 0.218
Male 92 (66.19) 59 (62.77) 33(73.33)
Female 47 (33.81) 35 (37.23) 12 (26.67)

Cesarean Section 66 (47.48) 46 (48.94) 20 (44.44) x*=0.25 0.620
(n,%)

Age at Onset (d) 15.00 (7.50, 20.84) 15.00 (8.00, 19.70) 14.75 (6.00, 22.00) Z=-0.23 0.822

Early Onset NBM (n,%) 8 (5.76) 3(3.19) 5(11.11) x*=2.21 0.137

Abnormal body tem- 114 (82.01) 80 (85.11) 34 (75.56) x*=1.88 0.170
perature (n,%)

Seizures (n,%) 34 (24.46) 11 (11.70) 23 (51.11) x*=25.58 <0.001

Poor feeding (n,%) 52 (37.41) 25 (26.60) 27 (60.00) x*=14.50 <0.001

Altered consciousness 76 (54.68) 46 (48.94) 30 (66.67) x2=3.86 0.049
(n,%)

Vomiting or Frothing 32 (23.02) 20 (21.28) 12 (26.67) x*=0.50 0.480
(n,%)

Cyanosis (n,%) 12 (8.63) 4 (4.26) 8 (17.78) x*=5.44 0.020

Bulging fontanelle 17 (12.23) 7 (7.45) 10 (22.22) x+=6.19 0.013
(n,%)

Widened cranial 9 (6.47) 5(5.32) 4 (8.89) %%+=0.19 0.666
sutures (n,%)

Hepatomegaly (n,%) 5 (3.60) 1(1.06) 4 (8.89) x+=3.35 0.067

Gazing (n,%) 13 (9.35) 5(5.32) 8 (17.78) x*=4.20 0.040

Muscle tone abnor- 21 (15.11) 5(5.32) 16 (35.56) %+ =21.69 <0.001
malities (n,%)

Abnormal primitive 22 (15.83) 5(5.32) 17 (37.78) x%=24.07 <0.001
reflexes (n,%)

Jaundice (n,%) 63 (45.32) 40 (42.55) 23 (51.11) x*=0.90 0.343

Omphalitis (n,%) 22 (15.83) 18 (19.15) 4(8.89) X% =2.40 0.121

Failed the hearing 24 (17.27) 12 (12.77) 12 (26.67) x*=4.12 0.042
screening(n,%)

Imaging Abnormalities 41 (29.50) 14 (14.89) 27 (60.00) x=29.77 <0.001
(n,%)

Mechanical ventila- 9 (6.47) 1(1.06) 8 (17.78) =11.41 <0.001
tion (n,%)

Hypotension requiring 4(2.88) 3(3.19) 1(2.22) %*=0.00 1.000
inotropes (n,%)

WBC (x 10°/L) 13.60 (10.07, 18.65) 13.45 (9.55, 18.67) 14.70 (11.20, 18.00) =—-0.48 0.628

Neutrophil ratio (%) 56.07 +15.95 54.13 +16.00 60.13 +15.21 T=-2.10 0.037

Hemoglobin (g/L) 149.29 + 30.53 148.50 +27.88 150.93 +35.74 t=-0.44 0.662

PLT (x 10%/L) 288.24 +157.79 300.77 +152.36 262.09 + 167.30 t=1.36 0.177

CRP (mg/L) 10.00 (4.00, 48.50) 5.00 (4.00, 27.50) 27.00 (5.00, 84.00) Z=-3.31 <0.001

CSF WBC Count(x 160.00 (44.00, 76.50 (40.00, 224.50) 870.00 (184.00, Z=-4.80 <0.001
10%/L) 608.50) 2500.00)

CSF Glucose (mmol/L) 2.67 (2.15, 2.84) 2.65 (2.21, 2.83) 2.68 (1.80, 3.04) Z=-0.53 0.595

CSF Protein (mg/L) 1464.00 (931.50, 1126.50 (908.50, 3000.00 (1176.00, =—4.53 <0.001

2732.09) 1706.96) 4215.00)
CSF Culture(n,%) 12 (8.63) 3(3.19) 9 (20.00) x*=8.87 0.003
Blood Culture(n,%) 23 (16.55) 13 (13.83) 10 (22.22) x*=1.55 0.213

t, t-test, Z, Mann-Whitney test, XZ, Chi-square testS, D, standard deviation, M, Median, Q,, 1st Quartile, Qs, 3st Quartile. NBM, neonatal

bacterial meningitis; WBC, white blood cells, PLT, platelet, CSF, cerebrospinal fluid.
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(version 4.3.3; R Foundation for Statistical Computing,
Vienna, Austria).

Results
Characteristics of the study cohort

Between January 2019 and December 2023, 259 infants were
diagnosed with NBM; 55 (21.2 %) were lost to follow-up, and
65 were excluded per criteria, and 139 infants were ana-
lyzed. Figure. 1 shows the study flow chart and patient
selection.

Among the 45 infants with poor prognosis, long-term neu-
rological sequelae occurred in 40 (28.8 % of cohort), totaling
73 events: epilepsy (12), developmental delay (15), hydro-
cephalus (8), language impairment (13), motor dysfunction
(16), hearing impairment (3), cognitive/emotional disorders
(3), cerebral palsy (1) The distribution of complications per
child was: one complication in 19 children, two in 9, three in
10, four in 1, and six in 1

Baseline characteristics of the NBM group

Significant differences (p < 0.05) between groups included
neutrophil ratio, CRP, CSF WBC count, protein, culture; seiz-
ures; poor feeding; altered consciousness; cyanosis; bulging
fontanelle; gazing; muscle tone abnormalities; abnormal
primitive reflexes; failed hearing screening; imaging abnor-
malities; and mechanical ventilation. No significant differ-
ences were found in birth weight, hemoglobin, platelet, age
at onset, CSF glucose, cesarean section, early onset NBM,

Coefficients
0

Td@soy tEeEs E
i
I’
i
Il
i

Log Lambda

Significance Not Selected [l Selocted

Features

Mean Importance (Z-score)

Figure. 2

Binomial Deviance

Accuracy

sex, blood culture, abnormal body temperature, vomiting/
frothing, widened sutures, hepatomegaly, jaundice, ompha-
litis, or hypotension.as shown in Table 1.

Feature selection results for NBM

LASSO identified six predictors; Boruta retained 12; RFE
retained 19. Five variables (CSF protein, seizures, abnormal
primitive reflexes, imaging abnormalities, and mechanical
ventilation) were consistent across all methods. Based on >
2-method consensus, 13 variables entered model develop-
ment. Feature selection results for NBM are shown in the
Supplementary Table and in Figure. 2A—D.

Results of the seven model construction and
evaluation

The comparative analysis revealed significant perfor-
mance variations among the seven ML algorithms (Table 2,
Figure. 3). In terms of discriminative ability, the LR
achieved the highest AUROC (0.903, 95 %Cl 0.865—0.924)
but had poor calibration (Brier 0.235) and lower specific-
ity (0.828). RF showed the best overall profile with
AUROC 0.898 (95%Cl 0.848-0.942), accuracy 0.881
(95%Cl 0.821-0.929), balanced sensitivity 0.887 and
specificity 0.878, and the lowest Brier score 0.123 (95 %Cl
0.103—0.148). XGBoost ranked third (AUROC 0.861) with
good calibration (Brier 0.143). LightGBM also performed
well (Brier 0.147). KNN and SVM showed unstable deci-
sion curves and lower net benefit; the neural network
showed intermediate performance.

33 33 33 32 31 31 30 28 27 25 23 22 17 13 10 6 4 3

Recursive Feature Elimination Results
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" @

10 20
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Feature selection with LASSO regression. A: Graph of coefficient paths for LASSO regression; B: Cross-validation plot for

LASSO regression; C Feature selection with Boruta. Z-Score ranking of clinical parameters. Variables having box plot in blue are
important, and in green as rejected. D Feature selection with RFE Visualization of RFE results can be seen that when 19 features are
selected, the model achieves the best performance. LASSO, the Least Absolute Shrinkage and Selection Operator; Recursive Feature

Elimination (RFE).
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Comparison of the performance of the 7 ML models.

Table 2

Calibration in Large

—0.005
—0.01
—0.026
—0.09
—0.056
—0.004
0.174

Brier Score

0.147
0.143
0.123
0.191

NPV PR AUC
0.713

PPV

Specificity

0.823

Sensitivity
0.830

Accuracy
0.825

AUROC
0.844
0.861

Model

0.917
0.931

0.712

LightGBM
XGBoost

0.725

0.860 0.827 0.720
0.878

0.887

0.838
0.881

0.777
0.641

0.787 0.945
0.690
0.692

0.723
0.733

0.898

RF

0.873

0.802 0.736 0.833

0.829

0.772

KNN

0.164
0.171

0.629
0.662

0.948
0.893

0.797

0.895

0.852

Neural Network

SVM

0.840
0.828

0.773

0.818

0.768

0.235

0.702

0.969

0.936

0.862

0.903

LR

As shown by DCA (Figure. 4A) RF, XGBoost, and LightGBM
provided greater net benefit than “treat-all” or “treat-
none” within 0.05-0.30 threshold. Precision-recall (PR)
analysis (Figure. 4B) confirmed RF highest average precision
(0.777, 95 %Cl 0.675—0.870), followed by XGBoost (0.725);
SVM and KNN lowest (0.641—0.662); neural network poorest
PR balance despite intermittent spikes.

Model interpretability

In the RF model, SHAP analysis identified CSF WBC count
(mean|SHAP| =0.080), CSF protein (0.069), and seizures
(0.059) as top features. Elevated CSF parameters, seizures,
feeding difficulties, and imaging abnormalities increased
adverse outcome risk; normal CSF glucose was protective.
As shown in Figure. 5B.

Discussion

NBM is one of the most severe central nervous system
infections that occurs during the neonatal period. Long-
term neurodevelopmental outcomes significantly affect
the quality of life of affected children and impose a sub-
stantial burden on their families. Compared with tradi-
tional univariate analysis methods, this study is, to our
knowledge, the first to develop an ML model for long-
term prognosis based exclusively on a cohort of term-
born infants with NBM.

ML model performance comparison

This study represents the first comprehensive investigation
employing seven distinct ML algorithms to forecast long-
term prognostic outcomes in NBM: three conventional mod-
els (LR, KNN, and SVM), three ensemble models (RF,
XGBoost, and LightGBM), and one deep learning model
(a neural network). Based on a multidimensional evaluation
framework encompassing discrimination capacity, classifica-
tion accuracy, calibration, and clinical utility to assess pre-
dictive performance, the authors found that the RF
model for long-term NBM prognosis prediction demonstrated
a combination of strong discriminative ability
(AUROC = 0.898), clinically meaningful classification perfor-
mance with balanced sensitivity (0.887) and specificity
(0.878), and exceptional probability calibration (Brier
score =0.123). These findings collectively indicate that the
RF model, with its balanced performance across multiple
metrics, is more suitable for clinical application than the LR
model, despite the latter’s superior AUROC. These findings
are consistent with those of previous studies on adverse out-
come prediction in neonatal disorders, confirming that the
RF model is optimal for predicting long-term NBM prognosis.
Mentis et al. explored the differential diagnosis of bacterial
and viral meningitis using LR, RF, and naive-Bayes algo-
rithms, and found that LR and RF showed the best perfor-
mance, with over 95 % accuracy for viral meningitis and 78 %
for bacterial meningitis[13]. Pinheiro et al. used the LR,
KNN, and RF algorithms to diagnose bacterial meningitis and
found that the RF model showed the best performance, with
a 90.6 % accuracy rate[14]. The authors also found that LR
demonstrated superior AUROC (0.903) and sensitivity

LightGBM, light gradient boosting machine; XGBoost, eXtreme gradient boosting; RF, Random Forest; KNN, k-nearest neighbors; SVM, support vector machine. LR, logistic regression; AUROC,

area under the curve; PPV, positive predictive value; NPV, negative predictive value; PR, precision-recall; AUC, area under the curve.
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Figure. 3  The Receiver operating characteristic curves for predicting Long-term adverse outcomes of NBM of 7 ML models. AUC,

area under curve; LightGBM, Light gradient boosting machine; XGboost,eXtreme gradient boosting machine; RF, Random forest; KNN,

k-nearest neighbors; SVM, support vector machine.

Decision Curve Analysis for 7 ML Models
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Figure. 4  The precision of DCA and PR curves for seven models. (A) Decision Curve Analysis (DCA) for seven models- Precision:
Within the reasonable range of threshold probabilities, a higher position of the model curve indicates greater net benefit from clinical
decisions using the model at that threshold. (B) Precision-Recall Curve (PR Curve): A curve closer to the upper-right corner signifies
better model performance in achieving high precision and recall simultaneously. ML, machine learning.

(0.936), but it was the poorest-calibrated model (Brier
score =0.235). Stadelman-Behar et al. developed a predic-
tive tool for tuberculous meningitis diagnosis based on LR,
RF, and regression tree models[15]. Based on these findings,
the present study demonstrates that the RF and LR algo-
rithms have emerged as robust prognostic tools for long-
term outcome prediction in NBM.

Key factors for NBM

This study employed three feature-selection methods:
LASSO, Boruta, and RFE. Finally, only features identified by
at least two methods were retained for the final modeling,

enhancing reliability while mitigating method-specific
biases. Thirteen key predictors were identified; these pre-
dictors are highly consistent with the clinicopathological
mechanisms. Among these, CSF WBC count was discarded by
LASSO. This was primarily due to the characteristics of the
LASSO method (handling collinearity and linear assump-
tions), which may have underestimated or masked its
effects. However, this was consistently identified as a criti-
cally important feature by both the Boruta and RFE meth-
ods, which are better at capturing complex relationships.
This finding demonstrates its central role in predicting
adverse outcomes related to NBM. Furthermore, the feature
selection approach may have inadvertently favored RF.
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Figure.5 RF Global model explanation by the SHAP method. (A) Feature Importance Scores of the RF Model. The importance of the

13 features was shown in descending order. (B) SHAP summary beeswarm plot of RF Model. The probability of NBM long-term adverse
outcomes of NBM increases with the SHAP value of a feature. A dot is made for SHAP value in the model for each single patient, so
each patient has one dot on the line for each feature. The colors of the dots demonstrate the actual values of the features for each
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CSF, cerebrospinal fluid CRP, C-reactive protein; WBC, white blood cells; SHAP, Shapley Additive explanations; NBM, neonatal bacte-

rial meningitis; LightGBM, Light Gradient Boosting Machine.

Although using the intersection of features from LASSO, Bor-
uta, and RFE enhanced stability, the RFE-selected feature
set encompassed all features identified by the other two
methods. This overlap potentially created an inherent
advantage for RF during model training.

SHAP interpretability analysis further revealed that the
top three important features are ranked as follows: CSF
WBC count and protein levels, and seizures. Among these,
the CSF WBC count is the most direct indicator of intracra-
nial infection severity. In this study, the CSF WBC count had
the highest weight in the RF model, predicting poor long-
term prognosis in NBM. Huang et al. also confirmed its supe-
rior diagnostic value compared with parameters like CSF
protein and glucose levels, and persistently elevated CSF
WBC was significantly associated with poor prognosis. In this
study, elevated CSF protein levels ranked second in the RF
model’s feature importance ranking, demonstrating good
discriminatory power for long-term poor prognosis in NBM,
which is largely consistent with previous findings[16]. Multi-
ple studies have shown that elevated CSF protein levels are
independently associated with poor prognoses in patients
with NBM. However, its sensitivity, specificity, and diagnostic
thresholds vary significantly, with a wide critical range
(1.0-5.0g/L), potentially influenced by gestational age and
postnatal age. Patients with levels > 5.0 g/L have a signifi-
cantly increased risk of hydrocephalus[17—19]. Among the
clinical manifestations, seizures ranked third in the RF fea-
ture importance ranking in this study. Ouchenir et al[19].
found that infants with seizures had a 12-fold increased risk
of death at discharge and were more prone to hearing loss,
motor impairments

Innovation and limitations of the study model

Utilizing comprehensive long-term follow-up data, this study
is the first to construct an ML prediction model applicable to
the long-term prognosis of patients with NBM. By incorporat-
ing physiological characteristics specific to the neonatal pop-
ulation — such as early-onset meningitis, full anterior
fontanelle, and incomplete elicitation of physiological
reflexes — the model requires only 13 routine clinical

indicators for risk assessment. By innovatively integrating
multiple feature selection methods, the model effectively
mitigated the issues of overfitting and variable collinearity
inherent in traditional regression analyses. Compared to pre-
diction models relying on complex laboratory tests, this
approach is more suitable for the practical conditions of neo-
natal wards in most hospitals. Furthermore, the study system-
atically compared seven types of mainstream models and
employed SHAP to interpret the optimal model. Through visu-
alization of individualized predictions, it enhanced model
transparency and clinical trustworthiness, facilitating the
identification of high-risk cases and providing an efficient tool
for precise risk stratification in resource-limited settings.

This study has several limitations. First, the relatively
small sample size and somewhat high loss-to-follow-up rate
may have constrained the performance of the machine
learning models. Furthermore, the single-center design lim-
its the external generalizability of the present findings.
Future studies should prioritize establishing multicenter pro-
spective cohorts to enhance validation and broader applica-
bility. Second, class imbalance was present, with adverse
outcomes accounting for only 32.4% of the total sample.
This may lead to overfitting to the majority class and reduce
the model’s ability to identify minority-class cases. Although
stratified sampling and threshold optimization using You-
den’s index were applied to mitigate this issue, future
research could explore advanced techniques such as syn-
thetic minority over-sampling technique Synthetic Minority
Over-sampling Technique or weighted loss functions to bet-
ter handle imbalanced data and improve model robustness.
Finally, although the RF model showed the best overall pre-
dictive performance with the lowest Brier score (0.123), its
calibration-in-the-large value (—0.026) indicated a slight
systematic underestimation of risk. This highlights that even
models with strong discrimination can exhibit poor calibra-
tion. Uncritical reliance on such miscalibrated predictions in
clinical settings may lead to underestimation of patient risk
and delayed intervention. Future work should emphasize
calibration as a core model evaluation criterion alongside
discrimination and consider applying post-hoc calibration
techniques to improve probabilistic accuracy.
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Conclusion

Based on ML technology, this study developed the first pre-
dictive model for the long-term adverse outcomes of NBM.
Thirteen core predictive factors were identified by integrat-
ing multimodal clinical data and employing a combined fea-
ture-selection strategy using LASSO, Boruta, and RFE.
Among the seven ML models, the Random Forest model dem-
onstrates the best overall predictive performance. The
SHAP interpretability analysis further validated the contri-
butions of the key features. This model provides a reliable
tool for the early identification of high-risk infants and guid-
ing individualized interventions, although future validation
through multicenter, large-sample cohorts and bedside clini-
cal implementation is required.
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