
Our reference: JPED101472

AUTHOR QUERY FORM

Journal: JPED Please e-mail your responses and any corrections to:

Article Number: 101472 E-mail: correctionsaptara@elsevier.com

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen anno-

tation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe

Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return

your corrections within 48 hours.

Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT

correct and your article belongs to a Special Issue/Collection please contact m.mustefaga@elsevier.com immediately prior to

returning your corrections.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in

the proof. Click on the ‘Q’ link to go to the location in the proof.

Location

in article

Query / Remark: click on the Q link to go

Please insert your reply or correction at the corresponding line in the proof

Q1 Please review the given names (no colouring) and surnames (highlighted in teal colouring) to make

sure that we have identified them correctly and that they are presented in the desired order. Carefully

verify the spelling of all authors’ names as well. If changes are needed, please provide the edits in the

author section.

Q2 Please verify corresponding author details for correctness.

Q3 Please check funding information for correctness.

Q4 Please check authors contributions for correctness.

Q5 Please provide journal title in reference 15..

Please check this box or indicate your approval if

you have no corrections to make to the PDF file.

Thank you for your assistance.

mailto:correctionsaptara@elsevier.com
mailto:m.mustefaga@elsevier.com
http://www.elsevier.com/artworkinstructions


ORIGINAL ARTICLE

Development of a machine learning-based predictive

model for long-term adverse outcomes in neonatal

bacterial meningitis

Q1 Ying Chen a,b,y, Shengpei Wangc,d,y, Jing Wu e, Chi Wang f, Ying Li a,
Peicen Zou a,b, Ruiqi Xiao a,b, Na Zhang g, Huiguang He c,d, Yajuan Wang a,b,*

a Capital Institute of Pediatrics, Department of Neonatology, Beijing, China
b Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
c Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China
d State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Institute of

Automation, Beijing, China
e Center for Evidence-Based Medicine, Capital Center for Children’s Health, Capital Medical University, Capital Institute of

Pediatrics, Beijing, China
f Hemangioma and Interventional Vascular Center, Capital Center for Children’s Health, Capital Medical University, Capital Institute

of Pediatrics, Beijing, China
g Faculty of Pediatrics, Seventh Medical Center of PLA General Hospital, Department of Neonatology, Beijing, China

Received 11 July 2025; accepted 9 October 2025

Available online xxx

Abstract

Objective: To explore the application of machine learning methods for screening risk factors for

long-term adverse prognosis in neonatal bacterial meningitis, determine the final prediction

model, and evaluate its predictive value.

Methods: This study included 139 full-term neonates diagnosed with neonatal bacterial meningi-

tis in the capital institute of pediatrics between January 2019 and December 2023. Based on fol-

low-up outcomes, they were divided into a poor prognosis group (n = 45) and a good prognosis

group (n = 94). Thirty-three clinical variables were collected. Feature selection was performed

using the Least Absolute Shrinkage and Selection Operator, Boruta, and Recursive Feature Elimi-

nation. Seven machine learning models were constructed. Model performance was evaluated

using metrics including the area under the receiver operating characteristic curve, accuracy,

and sensitivity. The Shapley Additive explanation method was used to interpret the models.

Results: Among the seven models, The Random Forest model demonstrates the best overall pre-

dictive performance, although Logistic Regression achieved the highest discriminative ability

(AUC: 0.903), Random Forest was more suitable for clinical application due to its superior accu-

racy (0.881), better calibration (Brier score: 0.123), and balanced sensitivity (0.887) and
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specificity (0.878). Shapley Additive explanation interpretability analysis further revealed that

the top three important features were cerebrospinal fluid white blood cell count, cerebrospinal

fluid protein levels, and seizures.

Conclusion: Machine learning models, particularly the superior-performing Random Forest, are

proven to reliably predict long-term adverse outcomes in NBM patients, aiding in the identifica-

tion of high-risk individuals. Further validation in broader cohorts is warranted to enhance gen-

eralizability and clinical applicability.

© 2025 Published by Elsevier España, S.L.U. on behalf of Sociedade Brasileira de Pediatria. This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 Introduction

2 Neonatal Bacterial Meningitis (NBM) is an infection of the central

3 nervous system in newborns caused by the invasion of various

4 bacteria. The incidence of NBM varies depending on the region

5 and study population. In developed countries, the overall inci-

6 dence has decreased to 0.3 cases per 1000 live births, whereas

7 in developing countries it ranges from 0.8 to 6.1 cases per 1000

8 live births [1]. Globally, an estimated 190,000 newborns die from

9 meningitis annually [2]. Over 50% of survivors develop long-term

10 neurological sequelae such as deafness, blindness, cerebral palsy,

11 epilepsy, hydrocephalus, or cognitive impairment, among whom

12 one in four experiences severe disability [3].

13 Poor prognosis in NBM is significantly associated with vari-

14 ous high-risk factors, including the host’s immune status

15 (e.g., premature birth and low birth weight), severity of

16 intracranial inflammation, pathogen type, and intracranial

17 complications[4�6]. To reduce confounding from prematu-

18 rity, the present study specifically enrolled only term

19 infants, focusing on intrinsic prognostic factors of NBM. Tra-

20 ditional prognostic methods rely on single data types and

21 lack multimodal integration, limiting early and precise iden-

22 tification of poor outcomes. Machine learning (ML) can inte-

23 grate high-dimensional multimodal data and has shown

24 value in neonatal sepsis and necrotizing enterocolitis (NEC).

25 For example, Kausch et al. built a neonatal sepsis model

26 using heart rate and respiration, Area Under the Receiver

27 Operating Characteristic curve(AUROC) > 0.8[7], and Cho et

28 al. identified NEC risk factors in very low birth weight infants

29 with RF and LR (accuracy 0.93; AUROC 0.72)[8].

30 However, AI studies on NBM remain limited, focusing mainly

31 on diagnosis rather than prognosis. ML offers a promising way

32 to overcome this bottleneck, as shown by Canas et al., combin-

33 ing MRI and clinical data to predict tuberculous meningitis pro-

34 gression (balanced accuracy 0.6) and brain injury (accuracy

35 0.96)[9]. The team previously used nine ML algorithms to pre-

36 dict short-term outcomes in 433 term neonates with NBM and

37 found that LR achieved a sensitivity 0.541 and specificity 0.974,

38 aiding early intervention. Building on this, the present study

39 aimed to integrate multimodal data and construct an ML model

40 to predict long-term adverse outcomes in NBM, guiding person-

41 alized treatment and optimizing resource allocation [10].

42 Methods

43 Participants

44 This study included full-term neonates diagnosed with NBM and

45 hospitalized in the Department of Neonatology of the capital

46institute of pediatrics between January 2019 and December 2023,

47with follow-up continuing until December 31, 2024. Preterm

48infants, considered at risk for neurodevelopmental delay, were

49excluded. This study was approved by the Ethics Committee of the

50Capital Institute of Pediatrics(Approval Number: SHERLL2024023).

51Inclusion criteria: Gestational age � 37 weeks, age �

5228 days, and meeting the diagnostic criteria for NBM as

53follows[11]: 1) Infants with clinical signs of infection,

54including hypothermia or hyperthermia, poor feeding,

55apnea, or neurological symptoms such as altered con-

56sciousness, seizures, muscle tone abnormalities, irritabil-

57ity, or a bulging fontanel; 2) cerebrospinal fluid (CSF)

58white blood cell (WBC) count � 20£ 10^6/L, accompa-

59nied by elevated CSF protein (> 1.7 g/L) or decreased

60CSF glucose (< 2.2 mmol/L); 3) positive CSF bacterial

61cultures or polymerase chain reaction. Meeting the first

62two criteria allowed a clinical diagnosis, whereas meet-

63ing all three criteria confirmed the diagnosis.

64Exclusion criteria: 1) Presence of congenital neurodeve-

65lopmental malformations, genetic metabolic diseases, or

66chromosomal abnormalities; 2) history of invasive central

67nervous system procedures before NBM diagnosis, such as

68ventriculoperitoneal shunt placement or myelomeningocele

69repair; 3) intracranial hemorrhage before NBM diagnosis; 4)

70other types of central nervous system infections; 5) severe

71asphyxia at birth; 6) patients lost to follow-up

72Follow-up

73The follow-up period ended on December 31, 2024, with the

74shortest follow-up duration being 13 months and the longest

75being up to 5 years. Patients were followed up through out-

76patient visits and telephone interviews.

77Patients lost to follow-up: ①patients were unreachable

78immediately after discharge; ②patients failed to complete

79the minimum one-year follow-up period after one or more

80initial contacts; ③patients were unable to be reached dur-

81ing a unified long-term follow-up survey conducted in 2024

82to assess their most recent outcomes, regardless of their

83previous follow-up status.

84Grouping

85During the follow-up period, the occurrence of any of the

86following manifestations or death indicated a poor progno-

87sis. Based on the follow-up results, the children were

88divided into a poor prognosis group (n = 45) and a good prog-

89nosis group (n = 94).

90Poor prognosis was defined as the occurrence of any of

91the following events during the follow-up period: (1) Gesell
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92 developmental diagnosis scale screening was conducted for

93 patients attending outpatient follow-up visits, a develop-

94 mental quotient below 75 in any domain (adaptive, gross

95 motor, fine motor, language, or social behavior); (2) diagno-

96 sis of any neurological sequelae (e.g., epilepsy, cerebral

97 palsy, visual, and mental or emotional behavioral abnormali-

98 ties) by a certified pediatric neurologist according to stan-

99 dard clinical criteria; (3) presence of significant abnormal

100 neuroimaging findings (e.g., hydrocephalus, encephalomala-

101 cia, delayed myelination) as reported by a radiologist; or (4)

102 death. All assessors who administered the Gesell Scales

103 were trained and certified to ensure inter-rater reliability.

104 Diagnoses of neurological conditions were made by senior

105 pediatric neurologists.

106 Observational clinical variables

107 The authors collected 33 variables within 7 days of onset:

108 general information (sex, cesarean section, birth weight,

109 age at onset, early-onset NBM); key clinical signs (abnor-

110 mal temperature, seizures, poor feeding, altered

111 consciousness, vomiting/frothing, cyanosis, bulging fonta-

112 nelle, widened sutures, hepatomegaly, gazing, tone/

113 reflex abnormalities, jaundice, omphalitis, need for ven-

114 tilation or inotropes); laboratory tests (C-reactive protein

115 (CRP), peripheral WBC, neutrophil %, hemoglobin, plate-

116 let count(PLT), CSF WBC, glucose, protein, culture; blood

117 culture); hearing screening results and cranial MRI find-

118 ings (ventriculitis, hemorrhage, hydrocephalus, subdural

119 effusion, abscess, encephalomalacia)

120 Feature selection

121 Variables with > 10 % missing were excluded; continuous

122 features were Z-score standardized. The dataset was split

123 into training (70 %) and testing (30 %) with stratified sam-

124 pling. The authors combined three methods — LASSO

125 (10-fold CV), Boruta (RF 500 iterations, p< 0.01), and RFE

126(RF importance ranking) — retaining only features identified

127by � 2 methods to enhance reliability and mitigate method

128bias. All analyses were performed with R v4.3.3.

129Construction of ML models and performance
130evaluation

131The authors developed seven ML algorithms — logistic regres-

132sion (LR), random forest (RF), support vector machine (SVM),

133eXtreme Gradient Boosting (XGBoost), k-nearest neighbors

134(KNN), Light Gradient Boosting Machine (LightGBM), and a neu-

135ral network — using optimized hyperparameters (grid

136search + 10-fold CV) with AUC-ROC as the main metric. Perfor-

137mance was validated on the test set by AUROC, precision-recall

138AUC, accuracy, sensitivity, specificity, PPV, NPV, Brier score, cal-

139ibration-in-the-large, and decision curve analysis(DCA, thresh-

140old 0.05�0.30).

141The authors maximized Youden’s index to define model-

142specific optimal cutoffs and bootstrapped 95 % CIs from 1000

143resamples. Python scikit-learn, XGBoost, and LightGBM

144packages were used.

145Model interpretability

146The authors applied Shapley Additive Explanations (SHAP) to

147quantify feature contributions to predictions, providing

148global and local interpretability across models using Python

149SHAP v0.46.0[12].

150Statistical methods

151Continuous data were described as mean § SD or median

152(IQR); normality and variance were tested with Shapir-

153o�Wilk and Levene’s tests. Student’s t-test or Mann�Whit-

154ney U test compared continuous variables; chi-square test

155compared categorical variables; p< 0.05 considered signifi-

156cant. All statistical analyses were performed with R software

Figure. 1 Concise flow chart demonstrating the subject screening steps and grouping.NBM, neonatal bacterial meningitis.
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Table 1 Baseline characteristics of the study group.

Variables Total (n = 139) Favorable Prognosis

Group (n = 94)

Adverse prognosis

Group (n = 45)

Statistic p

Birth Weight (kg) 3.48§ 0.47 3.47§ 0.50 3.52§ 0.42 t=�0.59 0.559

Sex, n(%) x
2 = 1.52 0.218

Male 92 (66.19) 59 (62.77) 33 (73.33)

Female 47 (33.81) 35 (37.23) 12 (26.67)

Cesarean Section

(n,%)

66 (47.48) 46 (48.94) 20 (44.44) x
2 = 0.25 0.620

Age at Onset (d) 15.00 (7.50, 20.84) 15.00 (8.00, 19.70) 14.75 (6.00, 22.00) Z =�0.23 0.822

Early Onset NBM (n,%) 8 (5.76) 3 (3.19) 5 (11.11) x
2 = 2.21 0.137

Abnormal body tem-

perature (n,%)

114 (82.01) 80 (85.11) 34 (75.56) x
2 = 1.88 0.170

Seizures (n,%) 34 (24.46) 11 (11.70) 23 (51.11) x
2 = 25.58 <0.001

Poor feeding (n,%) 52 (37.41) 25 (26.60) 27 (60.00) x
2 = 14.50 <0.001

Altered consciousness

(n,%)

76 (54.68) 46 (48.94) 30 (66.67) x
2 = 3.86 0.049

Vomiting or Frothing

(n,%)

32 (23.02) 20 (21.28) 12 (26.67) x
2 = 0.50 0.480

Cyanosis (n,%) 12 (8.63) 4 (4.26) 8 (17.78) x
2 = 5.44 0.020

Bulging fontanelle

(n,%)

17 (12.23) 7 (7.45) 10 (22.22) x
2 = 6.19 0.013

Widened cranial

sutures (n,%)

9 (6.47) 5 (5.32) 4 (8.89) x
2 = 0.19 0.666

Hepatomegaly (n,%) 5 (3.60) 1 (1.06) 4 (8.89) x
2 = 3.35 0.067

Gazing (n,%) 13 (9.35) 5 (5.32) 8 (17.78) x
2 = 4.20 0.040

Muscle tone abnor-

malities (n,%)

21 (15.11) 5 (5.32) 16 (35.56) x
2 = 21.69 <0.001

Abnormal primitive

reflexes (n,%)

22 (15.83) 5 (5.32) 17 (37.78) x
2 = 24.07 <0.001

Jaundice (n,%) 63 (45.32) 40 (42.55) 23 (51.11) x
2 = 0.90 0.343

Omphalitis (n,%) 22 (15.83) 18 (19.15) 4 (8.89) x
2 = 2.40 0.121

Failed the hearing

screening(n,%)

24 (17.27) 12 (12.77) 12 (26.67) x
2 = 4.12 0.042

Imaging Abnormalities

(n,%)

41 (29.50) 14 (14.89) 27 (60.00) x
2 = 29.77 <0.001

Mechanical ventila-

tion (n,%)

9 (6.47) 1 (1.06) 8 (17.78) x
2 = 11.41 <0.001

Hypotension requiring

inotropes (n,%)

4 (2.88) 3 (3.19) 1 (2.22) x
2 = 0.00 1.000

WBC (£ 109/L) 13.60 (10.07, 18.65) 13.45 (9.55, 18.67) 14.70 (11.20, 18.00) Z =�0.48 0.628

Neutrophil ratio (%) 56.07§ 15.95 54.13§ 16.00 60.13§ 15.21 T =�2.10 0.037

Hemoglobin (g/L) 149.29§ 30.53 148.50§ 27.88 150.93§ 35.74 t =�0.44 0.662

PLT (£ 109/L) 288.24§ 157.79 300.77§ 152.36 262.09§ 167.30 t = 1.36 0.177

CRP (mg/L) 10.00 (4.00, 48.50) 5.00 (4.00, 27.50) 27.00 (5.00, 84.00) Z =�3.31 <0.001

CSF WBC Count(£

106/L)

160.00 (44.00,

608.50)

76.50 (40.00, 224.50) 870.00 (184.00,

2500.00)

Z =�4.80 <0.001

CSF Glucose (mmol/L) 2.67 (2.15, 2.84) 2.65 (2.21, 2.83) 2.68 (1.80, 3.04) Z =�0.53 0.595

CSF Protein (mg/L) 1464.00 (931.50,

2732.09)

1126.50 (908.50,

1706.96)

3000.00 (1176.00,

4215.00)

Z =�4.53 <0.001

CSF Culture(n,%) 12 (8.63) 3 (3.19) 9 (20.00) x
2 = 8.87 0.003

Blood Culture(n,%) 23 (16.55) 13 (13.83) 10 (22.22) x
2 = 1.55 0.213

t, t-test, Z, Mann-Whitney test, x2, Chi-square testS, D, standard deviation, M, Median, Q₁, 1st Quartile, Q₃, 3st Quartile. NBM, neonatal

bacterial meningitis; WBC, white blood cells, PLT, platelet, CSF, cerebrospinal fluid.
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157 (version 4.3.3; R Foundation for Statistical Computing,

158 Vienna, Austria).

159 Results

160 Characteristics of the study cohort

161 Between January 2019 and December 2023, 259 infants were

162 diagnosed with NBM; 55 (21.2 %) were lost to follow-up, and

163 65 were excluded per criteria, and 139 infants were ana-

164 lyzed. Figure. 1 shows the study flow chart and patient

165 selection.

166 Among the 45 infants with poor prognosis, long-term neu-

167 rological sequelae occurred in 40 (28.8 % of cohort), totaling

168 73 events: epilepsy (12), developmental delay (15), hydro-

169 cephalus (8), language impairment (13), motor dysfunction

170 (16), hearing impairment (3), cognitive/emotional disorders

171 (3), cerebral palsy (1) The distribution of complications per

172 child was: one complication in 19 children, two in 9, three in

173 10, four in 1, and six in 1

174 Baseline characteristics of the NBM group

175 Significant differences (p< 0.05) between groups included

176 neutrophil ratio, CRP, CSF WBC count, protein, culture; seiz-

177 ures; poor feeding; altered consciousness; cyanosis; bulging

178 fontanelle; gazing; muscle tone abnormalities; abnormal

179 primitive reflexes; failed hearing screening; imaging abnor-

180 malities; and mechanical ventilation. No significant differ-

181 ences were found in birth weight, hemoglobin, platelet, age

182 at onset, CSF glucose, cesarean section, early onset NBM,

183sex, blood culture, abnormal body temperature, vomiting/

184frothing, widened sutures, hepatomegaly, jaundice, ompha-

185litis, or hypotension.as shown in Table 1.

186Feature selection results for NBM

187LASSO identified six predictors; Boruta retained 12; RFE

188retained 19. Five variables (CSF protein, seizures, abnormal

189primitive reflexes, imaging abnormalities, and mechanical

190ventilation) were consistent across all methods. Based on �

1912-method consensus, 13 variables entered model develop-

192ment. Feature selection results for NBM are shown in the

193Supplementary Table and in Figure. 2A�D.

194Results of the seven model construction and
195evaluation

196The comparative analysis revealed significant perfor-

197mance variations among the seven ML algorithms (Table 2,

198Figure. 3). In terms of discriminative ability, the LR

199achieved the highest AUROC (0.903, 95 %CI 0.865�0.924)

200but had poor calibration (Brier 0.235) and lower specific-

201ity (0.828). RF showed the best overall profile with

202AUROC 0.898 (95 %CI 0.848�0.942), accuracy 0.881

203(95 %CI 0.821�0.929), balanced sensitivity 0.887 and

204specificity 0.878, and the lowest Brier score 0.123 (95 %CI

2050.103�0.148). XGBoost ranked third (AUROC 0.861) with

206good calibration (Brier 0.143). LightGBM also performed

207well (Brier 0.147). KNN and SVM showed unstable deci-

208sion curves and lower net benefit; the neural network

209showed intermediate performance.

Figure. 2 Feature selection with LASSO regression. A: Graph of coefficient paths for LASSO regression; B: Cross-validation plot for

LASSO regression; C Feature selection with Boruta. Z-Score ranking of clinical parameters. Variables having box plot in blue are

important, and in green as rejected. D Feature selection with RFE Visualization of RFE results can be seen that when 19 features are

selected, the model achieves the best performance. LASSO, the Least Absolute Shrinkage and Selection Operator; Recursive Feature

Elimination (RFE).
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210As shown by DCA (Figure. 4A) RF, XGBoost, and LightGBM

211provided greater net benefit than “treat-all” or “treat-

212none” within 0.05�0.30 threshold. Precision-recall (PR)

213analysis (Figure. 4B) confirmed RF highest average precision

214(0.777, 95 %CI 0.675�0.870), followed by XGBoost (0.725);

215SVM and KNN lowest (0.641�0.662); neural network poorest

216PR balance despite intermittent spikes.

217Model interpretability

218In the RF model, SHAP analysis identified CSF WBC count

219(meanjSHAPj = 0.080), CSF protein (0.069), and seizures

220(0.059) as top features. Elevated CSF parameters, seizures,

221feeding difficulties, and imaging abnormalities increased

222adverse outcome risk; normal CSF glucose was protective.

223As shown in Figure. 5B.

224Discussion

225NBM is one of the most severe central nervous system

226infections that occurs during the neonatal period. Long-

227term neurodevelopmental outcomes significantly affect

228the quality of life of affected children and impose a sub-

229stantial burden on their families. Compared with tradi-

230tional univariate analysis methods, this study is, to our

231knowledge, the first to develop an ML model for long-

232term prognosis based exclusively on a cohort of term-

233born infants with NBM.

234ML model performance comparison

235This study represents the first comprehensive investigation

236employing seven distinct ML algorithms to forecast long-

237term prognostic outcomes in NBM: three conventional mod-

238els (LR, KNN, and SVM), three ensemble models (RF,

239XGBoost, and LightGBM), and one deep learning model

240(a neural network). Based on a multidimensional evaluation

241framework encompassing discrimination capacity, classifica-

242tion accuracy, calibration, and clinical utility to assess pre-

243dictive performance, the authors found that the RF

244model for long-term NBM prognosis prediction demonstrated

245a combination of strong discriminative ability

246(AUROC = 0.898), clinically meaningful classification perfor-

247mance with balanced sensitivity (0.887) and specificity

248(0.878), and exceptional probability calibration (Brier

249score = 0.123). These findings collectively indicate that the

250RF model, with its balanced performance across multiple

251metrics, is more suitable for clinical application than the LR

252model, despite the latter’s superior AUROC. These findings

253are consistent with those of previous studies on adverse out-

254come prediction in neonatal disorders, confirming that the

255RF model is optimal for predicting long-term NBM prognosis.

256Mentis et al. explored the differential diagnosis of bacterial

257and viral meningitis using LR, RF, and naive-Bayes algo-

258rithms, and found that LR and RF showed the best perfor-

259mance, with over 95 % accuracy for viral meningitis and 78 %

260for bacterial meningitis[13]. Pinheiro et al. used the LR,

261KNN, and RF algorithms to diagnose bacterial meningitis and

262found that the RF model showed the best performance, with

263a 90.6 % accuracy rate[14]. The authors also found that LR

264demonstrated superior AUROC (0.903) and sensitivity
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265 (0.936), but it was the poorest-calibrated model (Brier

266 score = 0.235). Stadelman-Behar et al. developed a predic-

267 tive tool for tuberculous meningitis diagnosis based on LR,

268 RF, and regression tree models[15]. Based on these findings,

269 the present study demonstrates that the RF and LR algo-

270 rithms have emerged as robust prognostic tools for long-

271 term outcome prediction in NBM.

272 Key factors for NBM

273 This study employed three feature-selection methods:

274 LASSO, Boruta, and RFE. Finally, only features identified by

275 at least two methods were retained for the final modeling,

276enhancing reliability while mitigating method-specific

277biases. Thirteen key predictors were identified; these pre-

278dictors are highly consistent with the clinicopathological

279mechanisms. Among these, CSF WBC count was discarded by

280LASSO. This was primarily due to the characteristics of the

281LASSO method (handling collinearity and linear assump-

282tions), which may have underestimated or masked its

283effects. However, this was consistently identified as a criti-

284cally important feature by both the Boruta and RFE meth-

285ods, which are better at capturing complex relationships.

286This finding demonstrates its central role in predicting

287adverse outcomes related to NBM. Furthermore, the feature

288selection approach may have inadvertently favored RF.

Figure. 3 The Receiver operating characteristic curves for predicting Long-term adverse outcomes of NBM of 7 ML models.AUC,

area under curve; LightGBM, Light gradient boosting machine; XGboost,eXtreme gradient boosting machine; RF, Random forest; KNN,

k-nearest neighbors; SVM, support vector machine.

Figure. 4 The precision of DCA and PR curves for seven models. (A) Decision Curve Analysis (DCA) for seven models- Precision:

Within the reasonable range of threshold probabilities, a higher position of the model curve indicates greater net benefit from clinical

decisions using the model at that threshold. (B) Precision-Recall Curve (PR Curve): A curve closer to the upper-right corner signifies

better model performance in achieving high precision and recall simultaneously. ML, machine learning.
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289 Although using the intersection of features from LASSO, Bor-

290 uta, and RFE enhanced stability, the RFE-selected feature

291 set encompassed all features identified by the other two

292 methods. This overlap potentially created an inherent

293 advantage for RF during model training.

294 SHAP interpretability analysis further revealed that the

295 top three important features are ranked as follows: CSF

296 WBC count and protein levels, and seizures. Among these,

297 the CSF WBC count is the most direct indicator of intracra-

298 nial infection severity. In this study, the CSF WBC count had

299 the highest weight in the RF model, predicting poor long-

300 term prognosis in NBM. Huang et al. also confirmed its supe-

301 rior diagnostic value compared with parameters like CSF

302 protein and glucose levels, and persistently elevated CSF

303 WBC was significantly associated with poor prognosis. In this

304 study, elevated CSF protein levels ranked second in the RF

305 model’s feature importance ranking, demonstrating good

306 discriminatory power for long-term poor prognosis in NBM,

307 which is largely consistent with previous findings[16]. Multi-

308 ple studies have shown that elevated CSF protein levels are

309 independently associated with poor prognoses in patients

310 with NBM. However, its sensitivity, specificity, and diagnostic

311 thresholds vary significantly, with a wide critical range

312 (1.0�5.0 g/L), potentially influenced by gestational age and

313 postnatal age. Patients with levels > 5.0 g/L have a signifi-

314 cantly increased risk of hydrocephalus[17�19]. Among the

315 clinical manifestations, seizures ranked third in the RF fea-

316 ture importance ranking in this study. Ouchenir et al[19].

317 found that infants with seizures had a 12-fold increased risk

318 of death at discharge and were more prone to hearing loss,

319 motor impairments

320 Innovation and limitations of the study model

321 Utilizing comprehensive long-term follow-up data, this study

322 is the first to construct an ML prediction model applicable to

323 the long-term prognosis of patients with NBM. By incorporat-

324 ing physiological characteristics specific to the neonatal pop-

325 ulation — such as early-onset meningitis, full anterior

326 fontanelle, and incomplete elicitation of physiological

327 reflexes — the model requires only 13 routine clinical

328indicators for risk assessment. By innovatively integrating

329multiple feature selection methods, the model effectively

330mitigated the issues of overfitting and variable collinearity

331inherent in traditional regression analyses. Compared to pre-

332diction models relying on complex laboratory tests, this

333approach is more suitable for the practical conditions of neo-

334natal wards in most hospitals. Furthermore, the study system-

335atically compared seven types of mainstream models and

336employed SHAP to interpret the optimal model. Through visu-

337alization of individualized predictions, it enhanced model

338transparency and clinical trustworthiness, facilitating the

339identification of high-risk cases and providing an efficient tool

340for precise risk stratification in resource-limited settings.

341This study has several limitations. First, the relatively

342small sample size and somewhat high loss-to-follow-up rate

343may have constrained the performance of the machine

344learning models. Furthermore, the single-center design lim-

345its the external generalizability of the present findings.

346Future studies should prioritize establishing multicenter pro-

347spective cohorts to enhance validation and broader applica-

348bility. Second, class imbalance was present, with adverse

349outcomes accounting for only 32.4 % of the total sample.

350This may lead to overfitting to the majority class and reduce

351the model’s ability to identify minority-class cases. Although

352stratified sampling and threshold optimization using You-

353den’s index were applied to mitigate this issue, future

354research could explore advanced techniques such as syn-

355thetic minority over-sampling technique Synthetic Minority

356Over-sampling Technique or weighted loss functions to bet-

357ter handle imbalanced data and improve model robustness.

358Finally, although the RF model showed the best overall pre-

359dictive performance with the lowest Brier score (0.123), its

360calibration-in-the-large value (�0.026) indicated a slight

361systematic underestimation of risk. This highlights that even

362models with strong discrimination can exhibit poor calibra-

363tion. Uncritical reliance on such miscalibrated predictions in

364clinical settings may lead to underestimation of patient risk

365and delayed intervention. Future work should emphasize

366calibration as a core model evaluation criterion alongside

367discrimination and consider applying post-hoc calibration

368techniques to improve probabilistic accuracy.

Figure. 5 RF Global model explanation by the SHAP method. (A) Feature Importance Scores of the RF Model. The importance of the

13 features was shown in descending order. (B) SHAP summary beeswarm plot of RF Model. The probability of NBM long-term adverse

outcomes of NBM increases with the SHAP value of a feature. A dot is made for SHAP value in the model for each single patient, so

each patient has one dot on the line for each feature. The colors of the dots demonstrate the actual values of the features for each

patient, as red means a higher feature value, and blue means a lower feature value. The dots are stacked vertically to show density.

CSF, cerebrospinal fluid CRP, C-reactive protein; WBC, white blood cells; SHAP, Shapley Additive explanations; NBM, neonatal bacte-

rial meningitis; LightGBM, Light Gradient Boosting Machine.
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369 Conclusion

370 Based on ML technology, this study developed the first pre-

371 dictive model for the long-term adverse outcomes of NBM.

372 Thirteen core predictive factors were identified by integrat-

373 ing multimodal clinical data and employing a combined fea-

374 ture-selection strategy using LASSO, Boruta, and RFE.

375 Among the seven ML models, the Random Forest model dem-

376 onstrates the best overall predictive performance. The

377 SHAP interpretability analysis further validated the contri-

378 butions of the key features. This model provides a reliable

379 tool for the early identification of high-risk infants and guid-

380 ing individualized interventions, although future validation

381 through multicenter, large-sample cohorts and bedside clini-

382 cal implementation is required.

383 Funding

384 All data generated or analyzed in this study are included in

385 the published article. This study was supported by the Beijing

386 Natural Science Foundation (nos. 7244289 and 7232009), Bei-

387 jing Municipal Administration of Hospitals Incubation Program

388 (No. PX2024047), National Natural Science Foundation of

389 China (no. 62201569), and High-level Public Health Technical

390 Personnel Construction Project of the Beijing Municipal

391 Health Commission (Grant no Academic leader: -03-02Q3 ).

392 Ethics statement

393 The study protocol was approved by the Ethics Committee of

394 Children’s Hospital, Capital Institute of Pediatrics (Approval

395 Number: SHERLL2024023)

396 Consent

397 The study involves anonymous data analysis with no risk to

398 participants, and waiver of informed consent is approved by

399 the ethics committee due to minimal impact and impossibil-

400 ity of individual identification.

401 Authors’ contributions

402 Ying Chen: writing�original draft preparation (lead), fund-

403 ing acquisition(lead), project administration (equal), formal

404 analysis (equal). Yajuan Wang: conceptualization (lead),

405 supervision (lead). Shenpei Wang: methodology (lead), fund-

406 ing acquisition(equal), writing�review & editing (equal).

407 Jing Wu: methodology (equal), funding acquisition(equal),

408 writing�review & editing (equal). Chi Wang: investigation

409 (euqal), methodology (equal). writing�original draft prepa-

410 ration (supporting).Ying Li and Peiceng Zou: writing�original

411 draft preparation (equal). Ruiqi Xiao: investigation(euqal),

412 writing�review & editing (supporting),project administra-

413 tion(equal). Huiguang He: Conceptualization (lead), project

414 administration(equal), resources(equal).Na Zhang: wri-

415 ting�review & editing (equal), resources(equal), data cura-

416 tion (equal). data curation (equal),project administration

417 (equalQ4 ).

418Data availability

419The datasets generated and/or analyzed during the current

420study are not publicly available to protect patient privacy

421and comply with ethical regulations. However, they can be

422made available from the corresponding author upon reason-

423able request, pending approval from the Ethics Committee

424of the Capital Institute of Pediatrics. In addition, the code

425used in this study is also available from the corresponding

426author upon reasonable request.

427Conflicts of interest

428The authors declare that they have no known competing

429financial interests or personal relationships that could have

430appeared to influence the work reported in this paper.

431Acknowledgments

432This work was supported by the Beijing Natural Science

433Foundation (Grant numbers 7244289 and 7232009), the Bei-

434jing Municipal Administration of Hospitals Incubation Pro-

435gram (Grant number PX2024047), the National Natural

436Science Foundation of China (Grant number 62201569), and

437the High-level Public Health Technical Personnel Construc-

438tion Project of the Beijing Municipal Health Commission

439(Grant number Academic leader: -03-02). The authors

440extend their sincere gratitude to the clinicians and nursing

441staff at the Department of Neonatology, Capital Institute of

442Pediatrics, for their assistance in patient care and data col-

443lection. The authors also thank all the infants and their fami-

444lies for their participation and cooperation in this study.

445Supplementary materials

446Supplementary material associated with this article can be

447found in the online version at doi:10.1016/j.jped.2025.101472.

448Editor

449R. Soibelmann Procianoy.

450References

4511. Ku LC, Boggess KA. Cohen-Wolkowiez M. Bacterial meningitis in

452infants. Clin Perinatol. 2015;42(1):29�45.

4532. GBD 2016 Meningitis Collaborators. Global, regional, and

454national burden of meningitis, 1990-2016: a systematic analysis

455for the Global Burden of Disease Study 2016. Lancet Neurol.

4562018;17(12):1061�82. Erratum in: Lancet Neurol. 2021;20(12):

457e7.

4583. Boskabadi H, Heidari E, Zakerihamidi M. Etiology, clinical find-

459ings and laboratory parameters in neonates with acute bacterial

460meningitis. Iran J Microbiol. 2020;12(2):89�97.

4614. Liu Y, Feng Y, Guo Y, Chen J, Liu C, Liang J. Clinical predictors of

462poor outcome of bacterial meningitis in infants <90 days: a sys-

463tematic review. Front Pediatr. 2024;12:1414778.

ARTICLE IN PRESS
JID: JPED [mSP6P;November 7, 2025;18:02]

9

Jornal de Pediatria xxxx;xxx(xxx): 101472

https://doi.org/10.1016/j.jped.2025.101472


464 5. Aleem S, Benjamin DJ, Burns CM, Duncan J, Melaku K, Norbekov

465 A, et al. Epidemiology and outcomes of bacterial meningitis in

466 the neonatal intensive care unit. J Perinatol. 2024;44

467 (12):1822�6.

468 6. Oncel MY, Cizmeci MN, Karadag-Oncel E, Elvan-Tuz A, Canpolat

469 FE, Akin MA, et al. Epidemiology and outcomes of neonatal

470 meningitis: results of the Turkish Neo-Meningitis nationwide

471 study. Pediatr Infect Dis J. 2024;43(4):365�70.

472 7. Kausch SL, Brandberg JG, Qiu J, Panda A, Binai A, Isler J, et al.

473 Cardiorespiratory signature of neonatal sepsis: development

474 and validation of prediction models in 3 NICUs. Pediatr Res.

475 2023;93(7):1913�21.

476 8. Cho H, Lee EH, Lee KS, Heo JS. Machine learning-based risk fac-

477 tor analysis of necrotizing enterocolitis in very low birth weight

478 infants. Sci Rep. 2022;12(1):21407.

479 9. Canas LS, Dong T, Beasley D, Donovan J, Cleary JO, Brown R,

480 et al. Computer-aided prognosis of tuberculous meningitis com-

481 bining imaging and non-imaging data. Sci Rep. 2024;14(1):17581.

482 10. Chen Y, Wang S, Wang C, Zhang N, Li Y, Shi H, et al. Establish-

483 ment of a machine learning-based prediction model for short-

484 term adverse prognosis in neonatal bacterial meningitis.

485 iLabMed. 2025: a2�a70030.

486 11. Xiaomei S, Hongmao Y, Xiaoshan Q. Practical neonatology. 5th

487 ed. Beijing: People’s Medical Publishing House; 2019.

488 12. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for

489 evaluating prediction models. Med Decis Making. 2006;26

490 (6):565�74.

49113. Mentis AA, Garcia I, Jim�enez J, Paparoupa M, Xirogianni A,

492Papandreou A, et al. Artificial intelligence in differential diag-

493nostics of meningitis: a nationwide study. Diagnostics. 2021;11

494(4):602.

49514. Pinheiro PG, Pinheiro LI, Holanda Filho R, Pereira ML, Pinheiro

496PR, Santiago PJ, et al. An application of machine learning in the

497early diagnosis of meningitis. The international research & inno-

498vation forum. Cham: Springer; 2022. p. 97�106.

49915. Stadelman-Behar A.M., Tiffin N., Ellis J., Creswell F.V., Ssebam-

500bulidde K., Nuwagira E., et al. Diagnostic prediction model for

501tuberculous meningitis: an individual participant data meta-

502analysis. 2024;111(3):546�53 Q5.

50316. Huang H, Tan J, Gong X, Li J, Wang L, Xu M, et al. Comparing sin-

504gle vs. combined cerebrospinal fluid parameters for diagnosing

505full-term neonatal bacterial meningitis. Front Neurol.

5062019;10:12.

50717. Peng HL, Hu Y, Chen HJ, Song PP, Jiang L. Risk factors for poor

508prognosis in children with refractory purulent meningitis and the

509discharge criteria. J Infect Public Health. 2018;11(2):238�42.

51018. Okike IO, Ladhani SN, Johnson AP, Henderson KL, Blackburn RM,

511Muller-Pebody B, et al. Clinical characteristics and risk factors

512for poor outcome in infants <90 days of age with bacterial men-

513ingitis in the United Kingdom and Ireland. Pediatr Infect Dis J.

5142018;37(9):837�43.

51519. Ouchenir L, Renaud C, Khan S, Bitnun A, Boisvert AA, Mcdonald

516J, et al. The epidemiology, management, and outcomes of bac-

517terial meningitis in infants. Pediatrics. 2017;140(1):e20170476.

ARTICLE IN PRESS
JID: JPED [mSP6P;November 7, 2025;18:02]

10

Y. Chen, S. Wang, J. Wu et al.


	Development of a machine learning-based predictive model for long-term adverse outcomes in neonatal bacterial meningitis
	Introduction
	Methods
	Participants
	Follow-up
	Grouping
	Observational clinical variables
	Feature selection
	Construction of ML models and performance evaluation
	Model interpretability
	Statistical methods

	Results
	Characteristics of the study cohort
	Baseline characteristics of the NBM group
	Feature selection results for NBM
	Results of the seven model construction and evaluation
	Model interpretability

	Discussion
	ML model performance comparison
	Key factors for NBM
	Innovation and limitations of the study model

	Conclusion
	Funding
	Ethics statement
	Consent
	Authors´ contributions
	Data availability
	Conflicts of interest
	Acknowledgments
	Supplementary materials
	References



